主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2025, Vol. 34 ›› Issue (8): 128-138.DOI: 10.3969/j.issn.1004-9479.2025.08.20230837

• 城市与产业 • 上一篇    

基于城市空间大数据的重庆主城区居住小区活力评价

明雨佳(), 刘勇()   

  1. 重庆大学管理科学与房地产学院,重庆 400044
  • 收稿日期:2023-12-05 修回日期:2024-03-08 出版日期:2025-08-15 发布日期:2025-09-01
  • 通讯作者: 刘勇
  • 作者简介:明雨佳(1998—),女,博士研究生,研究方向为城市地理学,E-mail:20150659@cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(71974022);重庆市自然科学基金项目(2021YC020)

Vitality assessment of residential neighborhoods in Chongqing main urban area based on urban spatial big data

Yujia MING(), Yong LIU()   

  1. School of Management Science and Real Estate, Chongqing University, Chongqing 400044, China
  • Received:2023-12-05 Revised:2024-03-08 Online:2025-08-15 Published:2025-09-01
  • Contact: Yong LIU

摘要:

在“以人为本”的城市发展导向下,识别居住小区的活力空间分布特征,制定有效的提升措施,营造富有活力的居住小区,对于满足居民“美好生活需求”具有重要意义。因此,研究从物质环境、邻里环境和人口集聚3个维度构建了居住小区活力的评价体系,并以重庆主城区为例,融合三维建筑模型、人口热力图、兴趣点(POI)等城市空间大数据,在精细尺度上识别其居住小区活力的分布特征。结果表明:重庆居住小区活力呈现多中心、组团式分布格局;小区活力从核心区域向外围逐步降低,活力较高的区域分布在主/副中心及城市组团,而新兴区域的小区活力较低;POI密度、人口热力、容积率等因素对居住小区活力的贡献较大;重庆小区活力的分布受山地地形显著影响。本研究构建的多维度居住小区活力的综合评价体系,融合精细尺度上的城市空间大数据,具有较好的普适性。同时,对居住小区活力的低值区域的有效识别,可为小区活力营造和品质提升提供参考。

关键词: 活力评价, 居住小区, 城市空间大数据, 山地城市, 重庆市

Abstract:

Under the guidance of "people-oriented" urban development, it is of great significance to identify the spatial distribution of community vitality and formulate measures for vibrant communities, further meeting residents' "needs of a better life". Therefore, to evaluate community vitality, this study constructed a comprehensive framework from the dimensions of physical environment, neighborhood environment, and population agglomeration. Then, this study integrated building models, population heatmaps, POI, and other urban spatial big data to quantify the distribution of community vitality at a fine scale. The results show that community vitality in Chongqing presents a polycentric and cluster pattern and the vitality decreases from the core area to the surrounding area with a gradient. In addition, vibrant communities concentrate in the main/sub-centers and urban clusters, whereas the newly built-up cluster exerts only low vitality. Factors such as POI density, population, and plot ratio are the main contributors to community vitality. Further, community vitality in Chongqing is influenced by the complex landform in mountainous terrain. The comprehensive framework based on multiple dimensions and the utilization of urban spatial big data has good generalizability. More importantly, the effective identification of areas with low community vitality provides a reference for targeted measures for vitality enhancement and quality improvement strategies.

Key words: vitality assessment, residential neighbourhood, urban spatial big data, mountainous city, Chongqing main urban area