主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2024, Vol. 33 ›› Issue (9): 118-132.DOI: 10.3969/j.issn.1004-9479.2024.09.20222276

• 城市与产业 • 上一篇    

基于多源大数据的城市安全感评价与优化策略

秦萧1,2(), 张一鸣3(), 甄峰1,2, 李民健1   

  1. 1.南京大学,建筑与城市规划学院,南京 210093
    2.南京大学,江苏省智慧城市规划与数字治理工程研究中心,南京 210093
    3.上海市上规院城市规划设计有限公司,上海 200040
  • 收稿日期:2022-09-20 修回日期:2022-11-25 出版日期:2024-09-15 发布日期:2024-09-23
  • 通讯作者: 张一鸣
  • 作者简介:秦萧(1987—),男,博士,准聘副教授/特聘研究员,研究方向为大数据与国土空间规划,E-mail:x.qin@nju.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52078246);国家自然科学基金青年项目(51708276)

Urban security sense evaluation and optimization strategy based on multi-source big data: A case study of the main urban area of Nanjing

Xiao QIN1,2(), Yiming ZHANG3(), Feng ZHEN1,2, Minjian LI1   

  1. 1.School of Architecture and Urban Planning
    2.Jiangsu Engineering Research Center of Smart City Planning and Digital Governance, Nanjing University, Nanjing 210093, China
    3.Shanghai Planning Institute Design Co. , Ltd, Shanghai 200040, China
  • Received:2022-09-20 Revised:2022-11-25 Online:2024-09-15 Published:2024-09-23
  • Contact: Yiming ZHANG

摘要:

城市精细化治理战略要求下,城市安全研究不仅需要关注物质空间安全防御体系建设,还应充分营造居民日常生活安全情感,以致力于提升城市品质、增强吸引力。首先,充分考虑居民活动与自然灾害、社会风险及建成环境之间的相互作用关系,构建城市安全感知机制模型;其次,从个人感知、建成环境、行为活动三个维度建立城市安全感评价指标体系;再者,以南京主城区为案例,利用多源大数据的创新手段对城市居民安全感进行综合测度;最后,对南京主城区安全感进行评价,识别其空间分布格局,提出其空间优化路径。研究发现:虽然在3个维度上居民安全感水平空间分布具有一定差异,但南京主城区居民安全感总体表现为“中部高南北低,组团分布明显”的空间分布格局;城市重要商圈及其周边较早开发的大型居住片区安全感高,而开发中新城和产业配套居住片区安全感低;活动功能植入、交通系统设计、公服设施布局、环境风貌修复、社区空间设计、规划政策引导、组织制度设计及智慧管理平台建设等能够更好地助力城市安全感低值区的安全水平提升。

关键词: 城市安全感, 多源大数据, 机器学习, 南京主城区, 空间优化

Abstract:

Under the requirements of refined urban governance strategy, not only the construction of physical space security defense system, but also fully creating residents' sense for daily life security should be emphasized in urban security research, so as to improve the quality of the city and enhance its attractiveness. Firstly, this research fully considers the interaction among residents' activities, natural disasters, social risks and the built environment, and then constructs the urban security sense mechanism model. Secondly, the indicator system of urban security sense is established from three dimensions of personal sense, built environment and behavioral activities. Furthermore, it uses multi-source big data to synthetically measure residents' security sense, taking the main urban area of Nanjing as an example. Finally, this research evaluates the security sense in Nanjing City, explores its spatial distribution pattern, and puts forward the corresponding spatial optimization path. The results show that: the spatial pattern of residents' security sense in Nanjing City is wholly 'higher in the center and lower in the north & south, with obvious group distribution', although there are some differences in the three dimensions. The security sense is higher in the important business districts and their surrounding residential areas developed early, and it is lower in the developing new towns and the industrial supporting residential areas. Many optimization strategies can promote the security level of the low-security sense areas, including function implantation, transportation system design, public service facility layout, environmental feature restoration, community space design, planning policy guidance, organization system design and smart management platform construction.

Key words: urban security sense, multi-source big data, machine learning, the main urban area of Nanjing, spatial optimization