世界地理研究 ›› 2025, Vol. 34 ›› Issue (4): 27-44.DOI: 10.3969/j.issn.1004-9479.2025.04.20230802
莫成鑫1(), 黄天能2(
), 夏卫生1, 范清瑶1, 周浩1
收稿日期:
2023-11-22
修回日期:
2024-03-04
出版日期:
2025-04-15
发布日期:
2025-04-27
通讯作者:
黄天能
作者简介:
莫成鑫(1999—),男,硕士研究生,研究方向为国土资源利用与管理,E-mail: 865724562@qq.com。
基金资助:
Chengxin MO1(), Tianneng HUANG2(
), Weisheng XIA1, Qingyao FAN1, Hao ZHOU1
Received:
2023-11-22
Revised:
2024-03-04
Online:
2025-04-15
Published:
2025-04-27
Contact:
Tianneng HUANG
摘要:
探索边境土地利用规律和趋势对维护边境土地安全和推进边境高质量发展意义重大。采用改进的K均值聚类算法进行空间地理分区,运用核密度分析、地理探测器等方法分析中越边境广西段的用地变化趋势。通过审视现有边境安全问题,设置自然发展和国家安全两类情景来模拟预测研究区未来的土地利用变化,结果表明:①空间地理分区后的模拟精度显著提高,模拟设置的条件参数符合国家安全战略发展的研究需求。②在自然发展情景下,不合理用地结构持续加剧边境虚空态势。在国家安全情景下,建设用地保持较高增长速度,永久基本农田、中高郁闭度林地减少趋势得到遏制。③两种情景下的土地利用差异主要体现在耕地、中高郁闭度林地、建设用地三类用地上,社会变迁、经济发展需求与土地利用方式之间的矛盾影响着中越边境广西段的安全。④未来中越边境广西段的土地利用应以国家安全战略为指引,通过实施差异化的边境国土空间管控、沿边村庄原地城镇化等措施来引领边境地区安全稳定发展。
莫成鑫, 黄天能, 夏卫生, 范清瑶, 周浩. 国家安全视角下中越边境广西段土地利用模拟研究[J]. 世界地理研究, 2025, 34(4): 27-44.
Chengxin MO, Tianneng HUANG, Weisheng XIA, Qingyao FAN, Hao ZHOU. Simulation study on land use in Guangxi section of the Sino Vietnamese border region from the perspective of national security[J]. World Regional Studies, 2025, 34(4): 27-44.
类型 | 名称 | 来源 |
---|---|---|
基础数据 | 2000、2020年土地利用数据 | 中国多时期土地利用遥感监测数据集(CNLUCC) |
自然因素 | 高程 | 地理空间数据云DEM |
坡度 | 基于DEM提取 | |
坡向 | ||
年均气温 | 世界气候数据中心(www.worldclim.org) | |
年均降雨量 | ||
社会因素 | 到公路的距离 | OpenStreetMap (www.openstreetmap.org) |
到铁路的距离 | ||
经济因素 | GDP | 中国GDP空间分布公里网格数据集 |
人口密度 | 美国能源部橡树岭国家实验室(andscan.ornl.gov) | |
夜间灯光 | NPP/VIIRS(www.ngdc.noaa.gov/eog/viirs) |
表1 数据来源信息
Tab.1 Data source information
类型 | 名称 | 来源 |
---|---|---|
基础数据 | 2000、2020年土地利用数据 | 中国多时期土地利用遥感监测数据集(CNLUCC) |
自然因素 | 高程 | 地理空间数据云DEM |
坡度 | 基于DEM提取 | |
坡向 | ||
年均气温 | 世界气候数据中心(www.worldclim.org) | |
年均降雨量 | ||
社会因素 | 到公路的距离 | OpenStreetMap (www.openstreetmap.org) |
到铁路的距离 | ||
经济因素 | GDP | 中国GDP空间分布公里网格数据集 |
人口密度 | 美国能源部橡树岭国家实验室(andscan.ornl.gov) | |
夜间灯光 | NPP/VIIRS(www.ngdc.noaa.gov/eog/viirs) |
2020年 | 2040年自然发展情景 | |||||||
---|---|---|---|---|---|---|---|---|
耕地 | 中高郁闭度林地 | 其他林地 | 草地 | 水域 | 建设用地 | 未利用地 | 合计 | |
合计 | 369 296.37 | 523 724.57 | 770 992.59 | 68 726.17 | 16 661.44 | 47 053.19 | 750.68 | 1 797 205.00 |
耕地 | 336 417.78 | 4 614.00 | 25 376.75 | 440.89 | 582.87 | 4 000.57 | 1.64 | 371 434.51 |
中高郁闭度林地 | 6 104.11 | 486 577.68 | 28 005.02 | 1 175.77 | 479.96 | 836.88 | 17.38 | 523 196.79 |
其他林地 | 21 593.46 | 23 866.37 | 725 888.47 | 1 464.35 | 624.03 | 4 607.20 | 16.22 | 778 060.09 |
草地 | 966.74 | 1 124.24 | 2 416.40 | 63 491.73 | 4 779.60 | 572.44 | 2.79 | 73 353.94 |
水域 | 337.82 | 190.81 | 278.99 | 2 301.47 | 10 114.91 | 127.40 | 1.29 | 13 352.70 |
建设用地 | 2 072.63 | 124.14 | 694.26 | 22.87 | 195.23 | 33 923.10 | 0.61 | 37 032.84 |
未利用地 | 1.68 | 8.64 | 18.99 | 1.33 | 8.66 | 24.08 | 710.76 | 774.14 |
合计 | 367 494.22 | 516 505.89 | 782 678.88 | 68 898.42 | 16 785.25 | 44 091.67 | 750.68 | 1 797 205.00 |
2020年 | 2040年国家安全情景 | |||||||
耕地 | 中高郁闭度林地 | 其他林地 | 草地 | 水域 | 建设用地 | 未利用地 | 合计 | |
耕地 | 354 021.39 | 2 479.94 | 11 735.21 | 415.05 | 325.11 | 2 456.17 | 1.64 | 371 434.51 |
中高郁闭度林地 | 2 298.49 | 513 203.75 | 2 165.93 | 1 120.38 | 720.39 | 3 675.24 | 12.60 | 523 196.77 |
其他林地 | 10 562.30 | 6 475.99 | 753 610.53 | 1 347.37 | 396.45 | 5 647.23 | 20.24 | 778 060.11 |
草地 | 824.66 | 1 181.09 | 2 714.00 | 63 464.76 | 4 759.90 | 406.90 | 2.62 | 73 353.93 |
水域 | 187.47 | 191.80 | 159.32 | 2 349.72 | 10 384.10 | 78.77 | 1.51 | 13 352.70 |
建设用地 | 1 400.38 | 183.18 | 585.50 | 27.71 | 70.81 | 34 764.73 | 0.53 | 37 032.83 |
未利用地 | 1.68 | 8.82 | 22.10 | 1.18 | 4.68 | 24.15 | 711.53 | 774.14 |
表2 2020—2040年两类情景下研究区土地利用转移矩阵 (hm2)
Tab.2 Stochastic matrix of land use in the study area under the under two types of scenarios from 2020 to 2040
2020年 | 2040年自然发展情景 | |||||||
---|---|---|---|---|---|---|---|---|
耕地 | 中高郁闭度林地 | 其他林地 | 草地 | 水域 | 建设用地 | 未利用地 | 合计 | |
合计 | 369 296.37 | 523 724.57 | 770 992.59 | 68 726.17 | 16 661.44 | 47 053.19 | 750.68 | 1 797 205.00 |
耕地 | 336 417.78 | 4 614.00 | 25 376.75 | 440.89 | 582.87 | 4 000.57 | 1.64 | 371 434.51 |
中高郁闭度林地 | 6 104.11 | 486 577.68 | 28 005.02 | 1 175.77 | 479.96 | 836.88 | 17.38 | 523 196.79 |
其他林地 | 21 593.46 | 23 866.37 | 725 888.47 | 1 464.35 | 624.03 | 4 607.20 | 16.22 | 778 060.09 |
草地 | 966.74 | 1 124.24 | 2 416.40 | 63 491.73 | 4 779.60 | 572.44 | 2.79 | 73 353.94 |
水域 | 337.82 | 190.81 | 278.99 | 2 301.47 | 10 114.91 | 127.40 | 1.29 | 13 352.70 |
建设用地 | 2 072.63 | 124.14 | 694.26 | 22.87 | 195.23 | 33 923.10 | 0.61 | 37 032.84 |
未利用地 | 1.68 | 8.64 | 18.99 | 1.33 | 8.66 | 24.08 | 710.76 | 774.14 |
合计 | 367 494.22 | 516 505.89 | 782 678.88 | 68 898.42 | 16 785.25 | 44 091.67 | 750.68 | 1 797 205.00 |
2020年 | 2040年国家安全情景 | |||||||
耕地 | 中高郁闭度林地 | 其他林地 | 草地 | 水域 | 建设用地 | 未利用地 | 合计 | |
耕地 | 354 021.39 | 2 479.94 | 11 735.21 | 415.05 | 325.11 | 2 456.17 | 1.64 | 371 434.51 |
中高郁闭度林地 | 2 298.49 | 513 203.75 | 2 165.93 | 1 120.38 | 720.39 | 3 675.24 | 12.60 | 523 196.77 |
其他林地 | 10 562.30 | 6 475.99 | 753 610.53 | 1 347.37 | 396.45 | 5 647.23 | 20.24 | 778 060.11 |
草地 | 824.66 | 1 181.09 | 2 714.00 | 63 464.76 | 4 759.90 | 406.90 | 2.62 | 73 353.93 |
水域 | 187.47 | 191.80 | 159.32 | 2 349.72 | 10 384.10 | 78.77 | 1.51 | 13 352.70 |
建设用地 | 1 400.38 | 183.18 | 585.50 | 27.71 | 70.81 | 34 764.73 | 0.53 | 37 032.83 |
未利用地 | 1.68 | 8.82 | 22.10 | 1.18 | 4.68 | 24.15 | 711.53 | 774.14 |
1 | HUANG T, WANG N. Spatial-temporal evolution analysis on land use multifunctionality in the China-Vietnam border area. Chinese Geographical Science, 2022, 32(6): 995-1012. |
2 | 方天建.乡村振兴视野下的中越边境地区"空心化"问题研究:基于滇桂交界地区的实证考察.民族学刊, 2018, 9(6): 34-43. |
FANG T. Research on the "hollowing out" problem in the Sino Vietnamese border area from the perspective of rural revitalization: An empirical investigation based on the Yunnan Guangxi border area.Journal of Ethnology,2018,9(6): 34-43. | |
3 | 韩淞宇. 边境地区人口过疏化问题研究——以延边朝鲜族自治州为例. 人口学刊, 2019, 41(4): 104-112. |
HAN S. Research on the problem of population sparsity in border areas: A case study of Yanbian Korean Autonomous Prefecture. Population Journal, 2019, 41(4): 104-112. | |
4 | 刘杰. 乡村社会"空心化":成因、特质及社会风险——以J省延边朝鲜族自治州为例. 人口学刊, 2014, 36(3): 85-94. |
LIU J. Hollow rural society: Causes, characteristics, and social risks: A case study of Yanbian Korean Autonomous Prefecture in J Province. Population Journal, 2014, 36(3): 85-94. | |
5 | 尤伟琼. 我国西南陆地边境的虚空态势及其治理思考. 思想战线, 2019, 45(3): 103-109. |
YOU W. The void situation and governance thinking of southwest land border in China. Thinking, 2019, 45(3): 103-109. | |
6 | 白利友,谭立力. 基于全球夜间灯光遥感数据的中国西南边境虚空化考察. 云南师范大学学报(哲学社会科学版), 2017, 49(4): 9-15. |
BAI L, TAN L. Investigation of Void Formation in Southwest China's border region based on global nighttime light remote sensing data. Journal of Yunnan Normal University(Humanities and Social Sciences Edition), 2017, 49(4): 9-15. | |
7 | 刘少坤, 王鹏程, 陆汝成, 等. 边境地区建设用地时空格局与驱动因素分析. 矿产与地质, 2022, 36(5): 1067-1077. |
LIU S, WANG P, LU R, et al. Analysis of the spatiotemporal pattern and driving factors of construction land in border areas. Mineral Resources and Geology, 2022, 36(5): 1067-1077. | |
8 | 马振超. 边境安全视角下朝鲜族乡村空心化问题探析——以中朝边境地区延边段为例. 武警学院学报, 2018, 34(9): 20-25. |
MA Z. Exploring the hollowing out problem of Korean ethnic rural areas from the perspective of border security: Taking the Yanbian section of the China North Korea border area as an example. Journal of Chinese People's, 2018, 34(9): 20-25. | |
9 | 李丽娟. 基于主体功能区框架下的防城区森林经营规划研究. 南宁: 广西大学, 2014. |
LI L. Research on forest management planning in Fangcheng District based on the framework of main functional zones. Nanning: Guangxi University, 2014. | |
10 | 何修良, 秦雨柔. 我国边境抵边村落空心化"治理陷阱"的实地调研及突破路径研究——基于政府治理行为分析. 广西民族研究, 2023(2): 27-35. |
HE X, QIN Y. Research on field investigation and breakthrough path of hollow governance traps in border villages in China: Based on analysis of government governance behavior. Guangxi Ethnic Studies, 2023(2): 27-35. | |
11 | 单卫东, 黄贤金, 曹小曙, 等. 保障发展与安全的国土空间功能组织创新研究. 自然资源学报, 2023, 38(11): 2792-2805. |
SHAN W, HUANG X, CAO X, et al. Research on innovation of national spatial function organization to ensure development and security. Journal of Natural Resources, 2023, 38(11): 2792-2805. | |
12 | 王亚宁. 边境安全视角下边境地区"空心化"问题思考. 武警学院学报, 2020, 36(9): 5-11. |
WANG Y. Reflections on the "hollowing out" of border areas from the perspective of border security.Journal of Chinese People's, 2020, 36(9): 5-11. | |
13 | 王江成.陆地边境虚空化的"抵边村落"观察:以云南省H边境县某"抵边村落"为个案.贵州师范大学学报(社会科学版), 2018(4): 59-66. |
WANG J. Observation on the void "border villages" at the land border:A case study of a "border village" in H border county, Yunnan Province. Journal of Guizhou Normal University(Social Sciences),2018(4): 59-66. | |
14 | 王秋如, 管青春, 孙根云. 多尺度视角下越南城市化时空演变特征研究——基于夜间灯光遥感数据.世界地理研究, 2023, 32(7): 61-74. |
WANG Q, GUAN Q, SUN G. Spatio-temporal evolution of urbanization in Vietnam from a multi-scale perspective: Based on nighttime light remote sensing data. World Regional Studies, 2023,32(7): 61-74. | |
15 | 刘宇斯, 李灿松, 葛旭瑞, 等. 云南省县域边境地方贸易时空演变及驱动因素. 世界地理研究,2024,33(8):174-188. |
LIU Y, LI C, GE X, et al. Spatio-temporal evolution and driving factors of county border local trade in Yunnan Province. World Regional Studies, 2024,33(8):174-188. | |
16 | 顾茉莉, 叶长盛, 李鑫, 等. 基于SD模型的江西省土地利用变化情景模拟. 地理与地理信息科学, 2022, 38(4): 95-103. |
GU M, YE C, LI X, et al. Scenario simulation of land use change in Jiangxi Province based on SD model. Geography and Geo-information Science, 2012,38(4):95-103. | |
17 | 侯婉,侯西勇,孙敏,等.2000—2010年亚欧大陆中低纬度海岸带土地利用/覆盖变化及驱动力分析.世界地理研究, 2021, 30(4): 813-825. |
HOU W, HOU X, SUN M, et al.Analysis of land use/cover changes and driving forces in the middle and low latitude coastal zones of the eurasian continent from 2000 to 2010.World Regional Studies,2021,30(4): 813-825. | |
18 | 张磊, 武友德, 李君, 等. 中缅泰老"黄金四角"地区缅甸段土地利用与景观格局变化分析. 世界地理研究, 2018, 27(4): 21-33. |
ZHANG L, WU Y, LI J, et al. Analysis of land use and landscape pattern changes in the Myanmar section of the "Golden Four Corners" of China, Myanmar, Thailand and Laos. World Regional Studies, 2018, 27(4): 21-33. | |
19 | 黄心怡, 赵小敏, 郭熙, 等. 鄱阳湖平原土地利用变化对生态网络稳定性影响的模拟分析. 农业工程学报, 2022, 38(9): 277-287. |
HUANG X, ZHAO X, GUO X, et al. Simulation analysis of the impact of land use change on ecological network stability in the Poyang Lake Plain. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (9): 277-287. | |
20 | 刘强,杨众养,陈毅青,等.基于CA-Markov多情景模拟的海南岛土地利用变化及其生态环境效应.生态环境学报, 2021, 30(7):1522-1531. |
LIU Q, YANG Z, CHEN Y, et al. Land-use change and its eco-environmental effects in Hainan Island based on CA-Markov multi-scenario simulation.Geography and Geo-information Science,2021,30(7):1522-1531. | |
21 | 杨光宗, 吕凯, 李峰. 基于格网尺度的南昌市土地利用变化及生态系统服务价值时空相关性分析. 中国土地科学, 2022, 36(8): 121-130. |
YANG G, LYU K, LI F. Spatial and temporal correlation analysis of land use change and ecosystem service value based on grid scale in Nanchang city. China Land Science, 2012,36(8):121-130. | |
22 | 张家旗, 余成, 申秋实. 坦桑尼亚土地利用变化生态环境效应的空间分异特征研究. 世界地理研究, 2024,33(7):59-72. |
ZHANG J, YU C, SHEN Q. Spatial differentiation characteristics of eco-environmental effects of land use change in Tanzania. World Regional Studies, 2024,33(7):59-72. | |
23 | ARSANJANI J, HELBICH M, KAINZ W, et al. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion.International Journal of Applied Earth Observation Geoinformation,2013,21: 265-275. |
24 | FIROZJAEI M K, KIAVARZ M, ALAVIPANAH S K, et al. Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran. Ecological Indicators, 2018, 91: 155-170. |
25 | VERBURG P, SOEPBOER W, VELDKAMP A, et al. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental management, 2002, 30(3): 391-405. |
26 | HAN J, HAYASHI Y, CAO X, et al. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landscape and Urban Plan, 2009, 91(3): 133-141. |
27 | 张大川, 刘小平, 姚尧, 等. 基于随机森林CA的东莞市多类土地利用变化模拟. 地理与地理信息科学, 2016, 32(5): 29-36. |
ZHANG D, LIU X, YAO Y, et al. Simulation of multi class land use change in Dongguan City based on random forest CA. Geography and Geo-information Science, 2016,32(5): 29-36. | |
28 | LI X, CHEN Y, LIU X, et al. Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 2017, 31(8): 1606-1629. |
29 | LI X, YANG Q, LIU X. Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landscape Urban Planning, 2008, 86(2): 177-186. |
30 | LIU X, LIANG X, LI X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape Urban Planning, 2017, 168: 94-116. |
31 | LIANG X, LIU X, CHEN GL, et al. Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones. International Journal of Geographical Information Science, 2020, 34(10): 1930-1952. |
32 | 徐新良, 刘纪远, 张树文, 等.中国多时期土地利用遥感监测数据集(CNLUCC). 北京: 资源环境科学数据注册与出版系统, 2018. |
XU X, LIU J, ZHANG S, et al. China multi period land use remote sensing monitoring data set (CNLUCC), Beijing: Resource and environmental science data registration and publishing system, 2018. | |
33 | 王千, 王成, 冯振元, 等. K-means聚类算法研究综述. 电子设计工程, 2012, 20(7): 21-24. |
WANG Q, WANG C, FENG Z, et al. A review of K-means clustering algorithm research. Electronic design engineering, 2012, 20(7): 21-24. | |
34 | 赵林峰, 刘小平, 刘鹏华, 等. 基于地理分区与FLUS模型的城市扩张模拟与预警. 地球信息科学学报, 2020, 22(3): 517-530. |
ZHAO L, LIU X, LIU P, et al. Urban expansion simulation and early warning based on geographical zoning and flus model. Journal of Geo-Information Science, 2020, 22(3): 517-530. | |
35 | 王保盛, 廖江福, 祝薇, 等. 基于历史情景的FLUS模型邻域权重设置——以闽三角城市群2030年土地利用模拟为例. 生态学报, 2019, 39(12): 4284-4298. |
WANG B, LIAO J, ZHU W, et al. Neighborhood weight setting of flus model based on historical scenarios:A case study of land use simulation in 2030 in the urban agglomeration of Fujian Delta. Acta Ecologica Sinica, 2019,39 (12): 4284-4298. | |
36 | 吴欣昕, 刘小平, 梁迅, 等. FLUS-UGB多情景模拟的珠江三角洲城市增长边界划定. 地球信息科学学报, 2018, 20(4): 532-542. |
WU X, LIU X, LIANG X, et al. The delimitation of urban growth boundary in the Pearl River Delta based on the multi scenario simulation of FLUS-UGB. Journal of Geo-Information Science, 2018, 20(4): 532-542. | |
37 | 王劲峰, 徐成东. 地理探测器:原理与展望. 地理学报, 2017, 72(1): 116-134. |
WANG J, XU C. Geodetector: Principles and prospects. Acta Geographica Sinica, 2017, 72(1): 116-134. | |
38 | 陈昆仑, 齐漫, 王旭, 等. 1995—2015年武汉城市湖泊景观生态安全格局演化. 生态学报, 2019, 39(5): 1725-1734. |
CHEN K, QI M, WANG X, et al. Evolution of ecological security pattern of Wuhan urban lake landscape from 1995 to 2015. Acta ecologica Sinica, 2019, 39(5): 1725-1734. | |
39 | YANG J, GUO A, LI Y, et al. Simulation of landscape spatial layout evolution in rural-urban fringe areas: A case study of Ganjingzi District. GIScience & Remote Sensing, 2019, 56(3): 388-405. |
40 | 谢凌凌, 许进龙, 臧俊梅, 等. 基于Markov-FLUS模型的广西土地利用变化模拟预测. 水土保持研究, 2022, 29(2): 249-254. |
XIE L, XU J, ZANG J, et al. Simulation and prediction of land use change in Guangxi based on Markov-FLUS model. Research of Soil and Water Conservation, 2022,29(2): 249-254. | |
41 | 李升发, 李秀彬. 耕地撂荒研究进展与展望. 地理学报, 2016, 71(3): 370-389. |
LI S, LI X. Research progress and prospect of farmland abandonment. Acta Geographica Sinica, 2016,71(3): 370-389. |
[1] | 张亚龙, 张海峰, 杨雪梅. 黄河流域城市碳收支时空差异与碳补偿分区研究[J]. 世界地理研究, 2024, 33(3): 116-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||