主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2023, Vol. 32 ›› Issue (4): 109-118.DOI: 10.3969/j.issn.1004-9479.2023.04.2020922

• 产业与布局 • 上一篇    

长三角地区专利引证与农业知识外溢研究

聂赛飞(), 谷人旭()   

  1. 华东师范大学城市与区域科学学院,上海 200241
  • 收稿日期:2020-12-31 修回日期:2021-04-20 出版日期:2023-04-15 发布日期:2023-05-19
  • 通讯作者: 谷人旭
  • 作者简介:聂赛飞(1995—),女,硕士研究生,研究方向为企业地理与区域经济,E-mail:saifei_nie@163.com

Research on patent citations and agricultural knowledge spillovers in the Yangtze River Delta

Saifei NIE(), Renxu GU()   

  1. School of Urban and Regional Science, East China Normal University, Shanghai 200241, China
  • Received:2020-12-31 Revised:2021-04-20 Online:2023-04-15 Published:2023-05-19
  • Contact: Renxu GU

摘要:

创新日益成为提高农业生产力、利润率和竞争力的主要驱动力,知识溢出对农业创新增长具有重要意义。以1985—2015年长三角三省一市专利资料,以及1999—2019年期间的专利引证资料为数据源,运用专利引证模型来分析长三角各省市专利引证和农业知识外溢状况,得出以下结论:(1)在2012年之前,长三角区域农业专利知识更倾向于与区域外互动,且农业知识学习强度高于农业知识溢出;2012年之后,区域内部互动程度增加,在农业知识学习和农业知识溢出两个方向上齐头并进。(2)三省一市农业类专利引证的地区集中度依次为江苏、安徽、浙江、上海。江苏在区域内双向互动较为活跃,上海则表现出相对独立的农业知识创新模式,对长三角区域整体农业创新的带动相对较弱。(3)受创新水平的限制,新近农业专利的新颖性和创新性高于老旧专利,其被引证的概率高于前者,仍然受限于时间落差的影响,引证概率随时间推移表现出先增大后减小的趋势。(4)农业领域知识学习具有门槛效应。安徽在区域内部除向其他省市学习新颖性和创新性的知识之外,也同时学习技术老旧但比较关键的基础性农业知识,经自身实践转化为具有普适性的农业知识,被其他省市引用的速度最快,但折旧率在区域内部也是最高的。

关键词: 专利引证, 农业专利, 知识溢出, 引证概率模型, 长三角地区

Abstract:

Innovation has increasingly become the primary driving force to improve agricultural productivity, profitability and competitiveness, and knowledge spillovers are of great significance to the growth of agricultural innovation. This article uses patent citation data from three provinces and one city in the Yangtze River Delta from 1985 to 2015, and patent citation data from 1999 to 2019, and employs the patent citation model to analyze the situation of patent citations and agricultural knowledge spillovers in the Yangtze River Delta provinces and cities, and draws the following conclusions: (1) Prior to 2012, agricultural patent knowledge in the Yangtze River Delta region is more inclined to interact with regions outside the region, and the intensity of agricultural knowledge learning is higher than the spillover of agricultural knowledge; The overflow goes hand in hand in both directions. (2) The regional concentration of agricultural patent citations in the three provinces and one city is ranked as Jiangsu, Anhui, Zhejiang and Shanghai in order. Jiangsu is relatively active in the two-way interaction in the region, while Shanghai has shown a relatively independent model of agricultural knowledge innovation, which is relatively weak in driving the overall agricultural innovation in the Yangtze River Delta. (3) Restricted by the level of innovation, recent agricultural patents are more novel and innovative than old patents, and their citation probability is higher than that of the former, but it is still limited by the impact of time gaps. The citation probability shows superiority over time. (4) Knowledge learning in the agricultural field has a threshold effect. In addition to learning novel and innovative knowledge from other provinces and cities in the region, Anhui also learns basic agricultural knowledge with old technology but relatively crucial, which is transformed into universal agricultural knowledge through its own practice. And Anhui's agriculture knowledge is cited fastest by other provinces and cities, but the depreciation rate is also the highest within the region.

Key words: patent citation, agricultural patent, knowledge spillover, citation probability model, Yangtze River Delta Region