主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2017, Vol. 26 ›› Issue (1): 45-55.

• 城市与区域 • 上一篇    下一篇

中国主要城市旅游要素网络关注空间演化特征

汪秋菊,刘宇   

  1. 北京联合大学旅游学院
  • 收稿日期:2016-05-03 修回日期:2016-08-13 出版日期:2017-02-16 发布日期:2017-03-20
  • 通讯作者: 刘宇
  • 基金资助:

    基于多模态网络数据挖掘的景区游客流量预测与预警研究;基于用户贡献内容的北京旅游目的地国际形象预警的研究

Evolution Characteristics of 24 Major Cities’ Network Attention Degree of Six Elements of Tourism in China

  • Received:2016-05-03 Revised:2016-08-13 Online:2017-02-16 Published:2017-03-20

摘要: 旅游要素发展水平,是衡量旅游产业成熟程度的重要标志。通过建立旅游“六要素”搜索关键词选取、搜索数据剥离及合成的技术方法,结合2011-2015年我国24个主要城市旅游要素网络关注度数据,采用变差系数、赫芬达尔系数等指标和标准差椭圆方法,分析城市旅游要素的网络关注指数空间演化特征。结果表明:2011至2015年,“吃、住、行、娱”四要素网络关注指数城市差异呈“V”字趋势波动,“购”要素差异越来越大,“游”要素差异则越来越小;旅游“六要素”网络关注指数的赫芬达尔系数变化不大,各城市度集聚程度低,关注较为分散;旅游“六要素”网络关注指数在空间扩展上具有极大相似性,呈现出东北—西南格局,向正东—正西方向转变的趋势。但“吃、住、行、购”等旅游要素网络关注指数标准差椭圆的中心呈现向西南偏移的趋势,而“游、娱”旅游要素则呈现出向东北偏移的趋势。

Abstract: in this article, search query data of tourism element of 24 major cities in China is used, and processes and technical methods are established for keywords of tourism elements selecting, search query data mining and stripping. Entropy method is used to integrate comprehensive index of search query data to analyze network attention-degree of the cities. Combined with Coefficient of Variation, Herfindahl index, and standard deviation ellipse method, the evolution of the spatial pattern of urban tourism elements be explored from 2011 to 2015. This article draws a conclusion that ‘Meals, lodging, travel, shopping, tour, and entertainment’ have different degrees of attractiveness. Coefficient of Variation of ‘Meals, lodging, travel, entertainment’ shows fluctuation of “V” shape. Shopping’s is getting larger and larger, but tour’s is getting smaller and smaller. Although the evolution of the spatial pattern has some similarities, the standard deviation ellipse which be acquired by using the search query data of ‘Meals, lodging, travel, shopping’ offset towards southwest, and of ‘travel, entertainment’ is showing a shift northeast.

中图分类号: