

世界地理研究 ›› 2025, Vol. 34 ›› Issue (12): 103-117.DOI: 10.3969/j.issn.1004-9479.2025.12.20231011
• 城市与产业 • 上一篇
收稿日期:2023-10-22
修回日期:2024-01-30
出版日期:2025-12-15
发布日期:2025-12-23
作者简介:林思彤(1998—),女,硕士研究生,研究方向为区域经济发展,E-mail:stlin98@163.com。
基金资助:Received:2023-10-22
Revised:2024-01-30
Online:2025-12-15
Published:2025-12-23
摘要:
以人工智能技术为核心的第四次产业革命深刻地影响着新时期长三角地区经济高质量发展,本地知识基础、相关多样化又影响着人工智能技术的发展,因此探讨本地知识基础、相关多样化对人工智能技术发展的影响对于服务长三角区域一体化发展的国家战略具有十分重要的意义。基于2007—2021年长三角申请的发明专利数据,借助GIS空间分析和线性概率模型,分析了长三角城市知识基础、相关多样化对人工智能技术发展的影响。结果表明:①长三角人工智能技术发展中,不同城市和不同技术在发展所需知识基础上存在区别,导致该区域技术发展知识基础具有明显的空间异质性;②长三角发展人工智能技术的知识基础水平空间分布不均衡,高值区主要集中于由合肥、南京、苏州、上海、杭州、金华、宁波等城市构成的“Z”字形轴线区,而环淮南、合肥、芜湖地带则属于低值区。从发展演化过程看,地区差异呈现缩小的趋势。同时,不同环节技术的相关知识基础空间差异显著,应用层技术知识基础布局较非应用层技术具有更强的空间集聚性;③本地知识基础支持了长三角人工智能技术的相关多样化发展,但这种影响在不同环节技术上不完全相同。充分利用长三角区域一体化发展国家战略带来的机遇,充分发挥各地比较优势,因地制宜,促进长三角人工智能技术健康发展,是值得政府相关部门重视的问题。
林思彤, 曾刚. 本地知识基础、相关多样化与人工智能技术发展[J]. 世界地理研究, 2025, 34(12): 103-117.
Sitong LIN, Gang ZENG. Local knowledge bases, related diversification, and the development of artificial intelligence technologies: The case of Yangtze River Delta[J]. World Regional Studies, 2025, 34(12): 103-117.
| 环节 | 技术类别代码 |
|---|---|
| G01N、H04L | |
| G06F、G06K、G06N、G06T、G10L、H04W | |
| A61B、B23Q、B25J、B64C、G01C、G05B、G05D、G06Q、G07C、G08B、G08G、H04N |
表 1 人工智能技术类别
Tab.1 The corresponding items of AI technologies
| 环节 | 技术类别代码 |
|---|---|
| G01N、H04L | |
| G06F、G06K、G06N、G06T、G10L、H04W | |
| A61B、B23Q、B25J、B64C、G01C、G05B、G05D、G06Q、G07C、G08B、G08G、H04N |
| 变量 | 样本量 | 最小值 | 最大值 | 均值 | 标准差 |
|---|---|---|---|---|---|
| Entry | 1 354 | 0 | 1 | 0.077 | 0.266 |
| RD | 1 640 | 0.030 | 87.800 | 21.310 | 16.580 |
| GDPP | 1 640 | 0.733 | 11.260 | 4.106 | 2.333 |
| PD | 1 640 | 0.123 | 3.803 | 0.743 | 0.553 |
| FR | 1 640 | 1.219 | 5.069 | 2.375 | 0.873 |
| SR | 1 640 | 1.700 | 96.400 | 17.460 | 16.520 |
表 2 变量描述性统计
Tab.2 Summary statistics
| 变量 | 样本量 | 最小值 | 最大值 | 均值 | 标准差 |
|---|---|---|---|---|---|
| Entry | 1 354 | 0 | 1 | 0.077 | 0.266 |
| RD | 1 640 | 0.030 | 87.800 | 21.310 | 16.580 |
| GDPP | 1 640 | 0.733 | 11.260 | 4.106 | 2.333 |
| PD | 1 640 | 0.123 | 3.803 | 0.743 | 0.553 |
| FR | 1 640 | 1.219 | 5.069 | 2.375 | 0.873 |
| SR | 1 640 | 1.700 | 96.400 | 17.460 | 16.520 |
| 时期 | 2007—2011年 | 2012—2016年 | 2017—2021年 |
|---|---|---|---|
| 总体技术 | 0.478*** | 0.343*** | 0.159 |
| 基础层技术 | 0.197* | 0.073 | -0.002 |
| 技术层技术 | 0.357*** | 0.170* | 0.013 |
| 应用层技术 | 0.580*** | 0.447*** | 0.282** |
表 3 2007—2021年长三角人工智能技术RD值全局Moran's I指数
Tab.3 The global Moran's I of RD in AI technologies across Yangtze River Delta, 2007-2021
| 时期 | 2007—2011年 | 2012—2016年 | 2017—2021年 |
|---|---|---|---|
| 总体技术 | 0.478*** | 0.343*** | 0.159 |
| 基础层技术 | 0.197* | 0.073 | -0.002 |
| 技术层技术 | 0.357*** | 0.170* | 0.013 |
| 应用层技术 | 0.580*** | 0.447*** | 0.282** |
| 变量 | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| RD | 0.005*** | 0.005*** | 0.003*** | 0.003*** |
| (0.001) | (0.001) | (0.001) | (0.001) | |
| GDPP | -0.028*** | -0.022*** | -0.023*** | |
| (0.005) | (0.006) | (0.007) | ||
| PD | 0.081*** | 0.078** | 0.035 | |
| (0.029) | (0.032) | (0.026) | ||
| FR | 0.040*** | 0.037** | 0.047** | |
| (0.015) | (0.015) | (0.022) | ||
| SR | 0.005*** | 0.005*** | 0.005*** | |
| (0.001) | (0.001) | (0.001) | ||
| Constant | -0.008 | -0.113*** | -0.102*** | -0.094** |
| (0.010) | (0.030) | (0.032) | (0.045) | |
| N | 1 354 | 1 354 | 1 354 | 1 354 |
| R2 | 0.057 | 0.133 | 0.177 | 0.184 |
| Adjusted R2 | 0.056 | 0.130 | 0.161 | 0.167 |
| F-statistic | 46.403*** | 16.424*** | 10.920*** | 9.573*** |
| Technology FE | No | No | Yes | Yes |
| Period FE | No | No | Yes | Yes |
| Province FE | No | No | No | Yes |
表 4 基准回归结果
Tab.4 Baseline regression results
| 变量 | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| RD | 0.005*** | 0.005*** | 0.003*** | 0.003*** |
| (0.001) | (0.001) | (0.001) | (0.001) | |
| GDPP | -0.028*** | -0.022*** | -0.023*** | |
| (0.005) | (0.006) | (0.007) | ||
| PD | 0.081*** | 0.078** | 0.035 | |
| (0.029) | (0.032) | (0.026) | ||
| FR | 0.040*** | 0.037** | 0.047** | |
| (0.015) | (0.015) | (0.022) | ||
| SR | 0.005*** | 0.005*** | 0.005*** | |
| (0.001) | (0.001) | (0.001) | ||
| Constant | -0.008 | -0.113*** | -0.102*** | -0.094** |
| (0.010) | (0.030) | (0.032) | (0.045) | |
| N | 1 354 | 1 354 | 1 354 | 1 354 |
| R2 | 0.057 | 0.133 | 0.177 | 0.184 |
| Adjusted R2 | 0.056 | 0.130 | 0.161 | 0.167 |
| F-statistic | 46.403*** | 16.424*** | 10.920*** | 9.573*** |
| Technology FE | No | No | Yes | Yes |
| Period FE | No | No | Yes | Yes |
| Province FE | No | No | No | Yes |
| 变量 | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| 应用层 | 非应用层 | 应用层 | 非应用层 | |
| RD | 0.004*** | 0.003** | 0.004*** | 0.002 |
| (0.001) | (0.001) | (0.001) | (0.001) | |
| GDPP | -0.028*** | -0.014** | -0.029** | -0.015* |
| (0.009) | (0.007) | (0.011) | (0.008) | |
| PD | 0.092** | 0.054 | 0.062 | 0.004 |
| (0.044) | (0.038) | (0.043) | (0.015) | |
| FR | 0.042* | 0.027 | 0.034 | 0.067*** |
| (0.023) | (0.016) | (0.035) | (0.024) | |
| SR | 0.005*** | 0.004** | 0.005*** | 0.004** |
| (0.001) | (0.002) | (0.002) | (0.002) | |
| Constant | -0.089* | -0.111*** | -0.054 | -0.154*** |
| (0.045) | (0.040) | (0.068) | (0.051) | |
| N | 777 | 577 | 777 | 576 |
| R2 | 0.159 | 0.153 | 0.161 | 0.158 |
| Adjusted R2 | 0.140 | 0.134 | 0.139 | 0.135 |
| F-statistic | 7.691*** | 3.208*** | 6.783*** | 3.098*** |
| Technology FE | Yes | Yes | Yes | Yes |
| Period FE | Yes | Yes | Yes | Yes |
| Province FE | No | No | Yes | Yes |
表 5 分产业链环节回归结果
Tab.5 Regression results of industry chain divisions
| 变量 | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| 应用层 | 非应用层 | 应用层 | 非应用层 | |
| RD | 0.004*** | 0.003** | 0.004*** | 0.002 |
| (0.001) | (0.001) | (0.001) | (0.001) | |
| GDPP | -0.028*** | -0.014** | -0.029** | -0.015* |
| (0.009) | (0.007) | (0.011) | (0.008) | |
| PD | 0.092** | 0.054 | 0.062 | 0.004 |
| (0.044) | (0.038) | (0.043) | (0.015) | |
| FR | 0.042* | 0.027 | 0.034 | 0.067*** |
| (0.023) | (0.016) | (0.035) | (0.024) | |
| SR | 0.005*** | 0.004** | 0.005*** | 0.004** |
| (0.001) | (0.002) | (0.002) | (0.002) | |
| Constant | -0.089* | -0.111*** | -0.054 | -0.154*** |
| (0.045) | (0.040) | (0.068) | (0.051) | |
| N | 777 | 577 | 777 | 576 |
| R2 | 0.159 | 0.153 | 0.161 | 0.158 |
| Adjusted R2 | 0.140 | 0.134 | 0.139 | 0.135 |
| F-statistic | 7.691*** | 3.208*** | 6.783*** | 3.098*** |
| Technology FE | Yes | Yes | Yes | Yes |
| Period FE | Yes | Yes | Yes | Yes |
| Province FE | No | No | Yes | Yes |
| [1] | TÖDTLING F, LEHNER P, TRIPPL M.Innovation in knowledge intensive industries: The nature and geography of knowledge links.European Planning Studies, 2006, 14(8):1035-1058. |
| [2] | XIAO J, BOSCHMA R.The emergence of artificial intelligence in European regions: The role of a local ICT base.Annals of Regional Science,2022,71(7):1-27. |
| [3] | CASTELLACCI F, CONSOLI D, SANTOALHA A. The role of e-skills in technological diversification in European regions.Regional Studies, 2020, 54(8):1123-1135. |
| [4] | MONTRESOR S, QUATRARO F.Regional branching and key enabling technologies: Evidence from European patent data.Economic Geography, 2017, 93(4):367-396. |
| [5] | BRESNAHAN T, TRAJTENBERG M.General purpose technologies 'Engines of growth'?.Journal of Econometrics, 1995,65(1):83-108. |
| [6] | YU Z, LIANG Z, XUE L. A data-driven global innovation system approach and the rise of China's artificial intelligence industry. Regional Studies, 2022, 56(4): 619-629. |
| [7] | 顾洁.长三角地区人工智能产业发展报告(2021)//王振,刘亮,薛艳杰.长三角地区经济发展报告(2020~2021).北京:社会科学文献出版社.2021:205-226. |
| GU J.Report on the Development of Artificial Intelligence Industry in the Yangtze River Delta Region (2021)//WANG Z,LIU L,XUE Y.Blue Book of Yangtze River Delta Economy: Report on Economic Development in the Yangtze River Delta Region (2020-2021).Beijing: Social Sciences Academic Press, 2021:205-226. | |
| [8] | 王梦梓,陈耿宇.2022年长三角数字经济发展报告//国家工业信息安全发展研究中心,赵岩.数字经济发展报告( 2022~2023 |
| WANG M, CHEN G.2022 Yangtze River Delta Digital Economy Development Report // CICS-CERT, ZHAO Y. Digital Economy Development Report ( 2022-2023).Beijing: Social Sciences Academic Press, 2023:290-301. | |
| ).北京:社会科学文献出版社.2023:290-301. | |
| [9] | JAFFE A, HENDERSON T. Geographic localization of knowledge spillovers as evidenced by patent citations. Quarterly Journal of Economics, 1993, 108(3):577-598. |
| [10] | BALLAND P, JARA-FIGUEROA C, PETRALIA S, et al. Complex economic activities concentrate in large cities. Nature Human Behaviour, 2018,4:248-254. |
| [11] | MASKELL P, MALMBERG A. Localised learning and industrial competitiveness. Cambridge Journal of Economics, 1999(2):167-185. |
| [12] | NOOTEBOOM B. Learning and Innovation in Organizations and Economies. Oxford:Oxford University Press, 2000. |
| [13] | WEITZMAN M. Recombinant growth. Quarterly Journal of Economics, 1998,113(2):331-360 . |
| [14] | FRENKEN K, VAN OORT F, VERBURG T. Related variety, unrelated variety and regional economic growth. Regional Studies, 2007, 41(5):685-697. |
| [15] | FRENKEN K, BOSCHMA R.A theoretical framework for evolutionary economic geography: Industrial dynamics and urban growth as a branching process.Journal of Economic Geography, 2007,7(5):635-649. |
| [16] | 苏灿,曾刚.演化经济地理学视角下区域新路径发展的研究评述与展望.经济地理,2021,41(2):23-34. |
| SU C, ZENG G.Review on study of regional new path development from the perspective of evolutionary economic geography.Economic Geography,2021,41(2):23-34. | |
| [17] | MASKELL P, MALMBERG A. The competitiveness of firms and regions:Ubiquitification and the importance of localized learning.European Urban and Regional Studies, 1999,6(1):9-25. |
| [18] | HIDALGO C, KLINGER B, BARABASI A,et al.The product space conditions the development of nations.Science, 2007,317(5837):482-487. |
| [19] | ESSLETZBICHLER J. Relatedness, industrial branching and technological cohesion in US metropolitan areas. Regional Studies, 2015, 49(5): 752-766. |
| [20] | FARINHA T, BALLAND P, MORRISON A,et al. What drives the geography of jobs in the US? Unpacking relatedness. Industry and Innovation, 2019, 26(9):988-1022. |
| [21] | NEFFKE F, HARTOG M, BOSCHMA R, et al. Agents of structural change: The role of firms and entrepreneurs in regional diversification. Economic Geography, 2017, 94(5):1-26. |
| [22] | NEFFKE F, HENNING M, BOSCHMA R.How do regions diversify over time? Industry relatedness and the development of new growth paths in regions. Economic Geography, 2011,87(3): 237-265. |
| [23] | XIAO J, BOSCHMA R, ANDERSSON M. Industrial diversification in Europe: The differentiated role of relatedness. Papers in Evolutionary Economic Geography, 2018, 94(5):1-36. |
| [24] | RIGBY D. Technological relatedness and knowledge space: Entry and exit of US cities from patent classes. Regional Studies, 2015,49(11):1922-1937. |
| [25] | TANNER A.The emergence of new technology-based industries: The case of fuel cells and its technological relatedness to regional knowledge bases. Journal of Economic Geography, 2016, 16 (3): 611-635. |
| [26] | BOSCHMA R, HEIMERIKS G, BALLAND P. Scientific knowledge dynamics and relatedness in biotech cities.Research Policy, 2014, 43(1):107-114. |
| [27] | 贺灿飞,董瑶,周沂. 中国对外贸易产品空间路径演化. 地理学报, 2016, 71(6): 970-983. |
| HE C, DONG Y, ZHOU Y.Evolution of export product space in China:Path-dependent or path-breaking? Acta Geographica Sinica,2016, 71(6): 970-983. | |
| [28] | 马双,曾刚,张翼鸥.技术关联性、复杂性与区域多样化——来自中国地级市的证据.地理研究,2020,39(4):865-879. |
| MA S, ZENG G, ZHANG Y.Technological relatedness,complexity and regional diversity:Evidence from Chinese cities.Geographical Research,2020,39(4):865-879. | |
| [29] | 高旻昱,曾刚,王丰龙.相关多样化、非相关多样化与区域创新产出——以长三角地区为例.人文地理,2020,35(5):103-110. |
| GAO M, ZENG G, WANG F.Related,unrelated variety and regional innovation output: A case study of Yangtze River Delta.Human Geography,2020,35(5):103-110. | |
| [30] | HIDALGO C, BALLAND P, BOSCHMA R, et al. The principle of relatedness//International Conference on Complex Systems (ICCS), Cambridge, MA, USA:Springer,2018: 451-457. |
| [31] | 贺灿飞,朱晟君.中国产业发展与布局的关联法则.地理学报,2020,75(12):2684-2698. |
| HE C, ZHU S.The principle of relatedness in China's regional industrial development.Acta Geographica Sinica,2020,75(12):2684-2698. | |
| [32] | DOLOREUX D, TURKINA E. New path creation in the artificial intelligence industry: Regional preconditions, new actors and their collective actions, and policies.Regional Studies, 2021,55(10-11):1751-1763. |
| [33] | GHERHES C, VORLEY T, VALLANCE P,et al.The role of system-building agency in regional path creation: Insights from the emergence of artificial intelligence in Montreal.Regional Studies,2022,56(4):563-578. |
| [34] | 邹伟勇,熊云军. 中国城市人工智能发展的时空演化特征及其影响因素. 地理科学,2022,42(7):1207-1217. |
| ZOU W, XIONG Y.Spatio-temproral evolution characteristics of AI development in Chinese cities and its influencing factors. Scientia Geographica Sinica,2022,42(7):1207-1217. | |
| [35] | 叶琴,徐晓磊,胡森林,等.长三角人工智能产业空间格局及影响因素.长江流域资源与环境,2022,31(3):526-536. |
| YE Q, XU X, HU S,et al.Pattern and impact factors of artificial intelligence industries' distribution in Yangtze River Delta.Resources and Environment in the Yangtze Basin,2022,31(3):526-536. | |
| [36] | BALLAND P, BOSCHMA R.Mapping the potentials of regions in Europe to contribute to new knowledge production in Industry 4.0 technologies.Regional Studies,2021,55(10-11):1652-1666. |
| [37] | BUARQUE B, DAVIES R, HYNES R,et al.OK Computer: The creation and integration of AI in Europe.Cambridge Journal of Regions, Economy and Society, 2020,13(1):175-192. |
| [38] | YU Z, LIANG Z, WU P. How data shape actor relations in artificial intelligence innovation systems: An empirical observation from China.Industrial and Corporate Change, 2021,30(1):251-267. |
| [39] | 刘刚,李依菲,刘捷,等.建设具有全球竞争力的人工智能产业集群.天津:中国工程院中国新一代人工智能发展战略研究院,2023. |
| LIU G, LI Y, LIU J,et al.Building the Artificial Intelligence Industry Clusters with Global Competitiveness. Tianjin: Chinese Institute of New Generation Artificial Intelligence Development Strategies,2023. | |
| [40] | ASHEIM B, BOSCHMA R, COOKE P.Constructing regional advantage: Platform policies based on related variety and differentiated knowledge bases.Regional Studies, 2011,45(7):893-904. |
| [41] | MUDAMBI R.Location, control and innovation in knowledge-intensive industries.Journal of Economic Geography, 2008, 8(5):699-725. |
| [42] | 中国信息通信研究院.ICT产业创新发展白皮书(2020年).北京:中国信息通信研究院,2020. |
| China Academy of Information and Communications Technology.White Paper on ICT Industry Innovation and Development (2020). Beijing: China Academy of Information and Communications Technology,2020. | |
| [43] | NEFFKE F. Productive places the influence of technological change and relatedness on agglomeration externalities. Utrecht, Netherlands: Utrecht University, 2009. |
| [44] | BOSCHMA R, MINONDO A, NAVARRO M.The emergence of new industries at the regional level in Spain: A proximity approach based on product relatedness.Economic Geography, 2013,89(1): 29-51. |
| [45] | 中国信息通信研究院政策与经济研究所,浙江清华长三角研究院营商环境研究中心.长三角数字经济发展报告(2021).(2021-10-08)[2023-07-01].. |
| China Academy of Information and Communications Technology,Yangtze Delta Region Institute of Tsinghua University,Zhejiang.Report on the Development of the Yangtze River Delta Digital Economy (2021).(2021-10-08)[2023-07-01].. | |
| [46] | 王皙皙,钱晓鑫,邹婷,等.全国约1/3人工智能企业都在这里!记者带你深入挖掘AI产业链︱长三角产业链图鉴.(2022-10-11)[2023-07-01].. |
| WANG X, QIAN X, ZOU T, et al.Nearly 1/3 of China's AI Firms Based Here: Exploring Yangtze River Delta's AI Chain.(2022-10-11)[2023-07-01].. | |
| [47] | 顾洁.2022年长三角人工智能发展报告//王振,刘亮.长三角地区经济发展报告( 2021~2022 |
| GU J.Report on Yangtze River Delta Artificial Intelligence Development(2022)//WANG Z,LIU L.Blue Book of Yangtze River Delta Economy: Report on Economic Development in the Yangtze River Delta Region (2021-2022).Beijing: Social Sciences Academic Press,2023: 245-276. | |
| ).北京:社会科学文献出版社.2023:245-276. | |
| [48] | 宓泽锋,曾刚.本地知识基础对新兴产业知识流动的影响——以中国燃料电池产业为例.地理学报,2021,76(4):1006-1018. |
| MI Z, ZENG G.The impact of local knowledge base on knowledge flow of emerging industry: A case of China's fuel cell industry.Acta Geographica Sinica,2021,76(4):1006-1018. | |
| [49] | BOSCHMA R, BALLAND P, KOGLER D.Relatedness and technological change in cities: The rise and fall of technological knowledge in US metropolitan areas from 1981 to 2010.Industrial and Corporate Change, 2015,24(1):223-250. |
| [50] | 徐青文,贺灿飞.产品关联、区域制度邻近与中国城市产业路径创造.地理研究,2023,42(3):636-659. |
| XU Q, HE C.Product relatedness,regional institutional proximity and industrial path creation in China.Geographical Research,2023,42(3):636-659. | |
| [51] | 连玉君,彭方平,苏治.融资约束与流动性管理行为.金融研究,2010(10):158-171. |
| LIAN Y, PENG F, SU Z.Financing constraints and liquidity management.Journal of Financial Research,2010(10):158-171. |
| [1] | 毛润泽, 刘源, 刘震. 长三角地区间文旅产业发展差距的动态演变与影响因素研究[J]. 世界地理研究, 2025, 34(9): 143-157. |
| [2] | 王婷, 李禕, 周浩楠. 长三角地区跨界共建园:时空特征、城市偏好与影响机制[J]. 世界地理研究, 2024, 33(6): 102-115. |
| [3] | 康江江, 宁越敏. 长三角地区主导产业专业化集聚演变与影响因素[J]. 世界地理研究, 2024, 33(6): 116-127. |
| [4] | 王盈, 应婉云, 罗小龙. 欧盟跨界区域发展的历程、制度特征与启示[J]. 世界地理研究, 2024, 33(3): 56-69. |
| [5] | 蔡世珍, 徐旳, 刘春卉. 长三角流动人口居留意愿影响因素的空间分异研究[J]. 世界地理研究, 2024, 33(11): 106-119. |
| [6] | 聂赛飞, 谷人旭. 长三角地区专利引证与农业知识外溢研究[J]. 世界地理研究, 2023, 32(4): 109-118. |
| [7] | 韦汝虹, 金李, 方达. 商品住宅价格空间溢出效应测度及其影响 因素分析[J]. 世界地理研究, 2023, 32(1): 117-129. |
| [8] | 孔翔, 陈开航, 李一曼. 长三角地区市场分割的时空演变及其空间 溢出效应[J]. 世界地理研究, 2022, 31(4): 827-836. |
| [9] | 胡美娟, 孙萍, 李在军, 侯兵. 长三角城市经济增长与资源环境压力的脱钩效应[J]. 世界地理研究, 2022, 31(3): 538-548. |
| [10] | 侯兵 周晓倩 卢晓旭 陶然 张爱平. 城市文化旅游竞争力评价体系的构建与实证分析——以长三角地区城市群为例[J]. 世界地理研究, 2016, (6): 166-176. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
