主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2023, Vol. 32 ›› Issue (1): 117-129.DOI: 10.3969/j.issn.1004-9479.2023.01.2020680

• 产业与布局 • 上一篇    下一篇

商品住宅价格空间溢出效应测度及其影响 因素分析

韦汝虹1(), 金李1, 方达1,2()   

  1. 1.北京大学光华管理学院,北京 100871
    2.东南大学土木与城市工程系,南京 210018
  • 收稿日期:2020-09-26 修回日期:2020-12-24 出版日期:2023-01-01 发布日期:2023-01-01
  • 通讯作者: 方达
  • 作者简介:韦汝虹(1984—),女,博士,中级经济师,主要研究方向为金融学、区域经济学,E-mail: 1395927096@qq.com
  • 基金资助:
    国家重点研发项目(2018YFB1600200)

The spatial spillover of housing price and its determinants: Case study in the Yangtze River Delta

Ruhong WEI1(), Li JIN1, Da FANG1,2()   

  1. 1.Guanghua School of Management, Peking University, Beijng 100871, China
    2.Department of Civil Engineering, Southeast University, Nanjing 210018, China
  • Received:2020-09-26 Revised:2020-12-24 Online:2023-01-01 Published:2023-01-01
  • Contact: Da FANG

摘要:

商品房价格的空间溢出效应是当前学界探讨的重要议题,但鲜有研究基于区域视角测度并对比不同商品房价格空间溢出效应的差异。本文以长三角地区为例,基于GIS的空间计量模型尝试测度商品房价格的空间溢出效应,并进一步对比分析三种商品住宅(新住宅、二手住宅和租赁住宅)价格的空间溢出效应及其影响因素。结果表明:(1)上海、杭州和南京三个城市的商品住宅价格明显高于其他城市,说明其价格与城市的经济(行政)等级密不可分;(2)三种住宅价格均表现为由上海向内陆区域依次降低的空间规律,具有明显的空间等级性;(3)新住宅、二手住宅和租赁住宅价格的空间溢出效应依次减弱,但新住宅和二手住宅价格的溢出效应差别不大;(4)上海、苏州、南通和嘉兴四个城市处于高房价集聚区,该区域商品房价格与周边城市的商品住宅价格存在显著的空间溢出关系;(5)经济基础、消费需求和社会资源对三种商品住宅价格的空间溢出均具有显著的促进作用。

关键词: 房地产, 商品住宅, 空间溢出, 影响因素, 长三角地区

Abstract:

The spatial spillover of commercial housing price is a key issue in recent years. However, very few scholars quantitatively measured the spatial spillover and explored its difference among types of commercial real estate. Taking the Yangzte River Delta as the study area, this paper aims to quantitatively measure the spatial spillover of housing price and its determinants among three types of commercial house (new house, second-hand house, and renting house). The results indicate that, first, the price of commercial house in Shanghai, Hangzhou, and Nanjing are rather higher than that in other cities, suggesting that the price is linked with the economic (administrative) hierarchy of cities. Second, the price decreases form the coast to the inland area, indicating a significant spatial hierarchy. Third, the spatial spillover of housing price continuously decreases from new house, to second-hand house, and to renting house. Fourth, Shanghai, Suzhou, Nantong, and Jiaxing appear in the agglomeration areas with higher price, indicating that the housing price of the four cities has a stronger linkage with that of other cities. In addition, economic foundation, consumption demand, and social (educational) resources play significant roles in the spatial spillover of housing prices.

Key words: real estate, commercial housing, spatial spillover, determinants, the Yangzte River Delta