世界地理研究 ›› 2021, Vol. 30 ›› Issue (3): 645-656.DOI: 10.3969/j.issn.1004-9479.2021.03.2020376
收稿日期:
2020-06-17
修回日期:
2020-08-27
出版日期:
2021-05-20
发布日期:
2021-06-08
通讯作者:
明庆忠
作者简介:
韩剑磊(1987-),男,博士研究生,讲师,区域旅游经济与旅游规划开发,E-mail:523502796@qq.com。
基金资助:
Jianlei HAN1(), Qingzhong MING2(), Pengfei SHI2, Dengshan LUO2
Received:
2020-06-17
Revised:
2020-08-27
Online:
2021-05-20
Published:
2021-06-08
Contact:
Qingzhong MING
摘要:
基于多维流视角,运用GIS及社会网络分析方法,对比分析云南省旅游经济流、客流、信息流、资金流的网络结构差异特征及相互影响作用机制。研究表明:云南省供需两侧旅游流反向发展态势明显,旅游流网络异质演变特征明显,流量水平趋高,而流质水平偏低。旅游经济流发展未能随着旅游客流和信息流的发展而增强,网络密度偏低且长期存在旅游经济发展孤点,旅游经济合作交流不足。各州市在旅游经济流网络中“零和竞争”的偏利非共生发展态势,使得旅游市场领域存在一定的“公地悲剧”现象。云南省旅游流节点水平及其空间特征差异显著,”核心-边缘”结构明显。云南省旅游经济流受到旅游客流的中介力、旅游信息流的推动力、旅游资金流的拉动力三者的共同作用影响,各作用力影响程度表现出强弱历时性差异演化,旅游客流中介力持续增强,旅游信息流推动力稳步强化,旅游资金流拉动力显著下降。云南省旅游经济增长及旅游经济流网络发展驱动模式,正逐步由“供给侧拉动型”向“需求侧推动型”转变。
韩剑磊, 明庆忠, 史鹏飞, 骆登山. 多维“流”视角下区域旅游网络结构特征及其作用机制分析——以云南省为例[J]. 世界地理研究, 2021, 30(3): 645-656.
Jianlei HAN, Qingzhong MING, Pengfei SHI, Dengshan LUO. Analysis on structural characteristics of regional tourism network and its influence mechanism from the perspective of multi-dimensional flow ——Taking Yunnan Province as an example[J]. World Regional Studies, 2021, 30(3): 645-656.
年份 | 网络密度 | 网络关联性 | ||||||
---|---|---|---|---|---|---|---|---|
经济流 | 客流 | 信息流 | 资金流 | 经济流 | 客流 | 信息流 | 资金流 | |
2012 | 0.1583 | 0.3125 | 0.2458 | 0.2625 | 0.7583 | 1.0000 | 1.0000 | 1.0000 |
2015 | 0.1500 | 0.3917 | 0.4167 | 0.2083 | 0.7583 | 1.0000 | 1.0000 | 1.0000 |
2018 | 0.1583 | 0.5735 | 0.5625 | 0.1833 | 0.7583 | 1.0000 | 1.0000 | 1.0000 |
年份 | 网络等级度 | 网络效率 | ||||||
经济流 | 客流 | 信息流 | 资金流 | 经济流 | 客流 | 信息流 | 资金流 | |
2012 | 0.2667 | 0.0000 | 0.5714 | 1.0000 | 0.8718 | 0.7143 | 0.6857 | 0.5429 |
2015 | 0.6410 | 0.0000 | 0.5000 | 1.0000 | 0.8462 | 0.6476 | 0.4476 | 0.6667 |
2018 | 0.4651 | 0.0000 | 0.0000 | 1.0000 | 0.8718 | 0.4476 | 0.3143 | 0.7238 |
表1 云南省旅游流空间网络整体特征指标
Tab.1 The overall space network characteristics of the tourism flow in Yunnan Province
年份 | 网络密度 | 网络关联性 | ||||||
---|---|---|---|---|---|---|---|---|
经济流 | 客流 | 信息流 | 资金流 | 经济流 | 客流 | 信息流 | 资金流 | |
2012 | 0.1583 | 0.3125 | 0.2458 | 0.2625 | 0.7583 | 1.0000 | 1.0000 | 1.0000 |
2015 | 0.1500 | 0.3917 | 0.4167 | 0.2083 | 0.7583 | 1.0000 | 1.0000 | 1.0000 |
2018 | 0.1583 | 0.5735 | 0.5625 | 0.1833 | 0.7583 | 1.0000 | 1.0000 | 1.0000 |
年份 | 网络等级度 | 网络效率 | ||||||
经济流 | 客流 | 信息流 | 资金流 | 经济流 | 客流 | 信息流 | 资金流 | |
2012 | 0.2667 | 0.0000 | 0.5714 | 1.0000 | 0.8718 | 0.7143 | 0.6857 | 0.5429 |
2015 | 0.6410 | 0.0000 | 0.5000 | 1.0000 | 0.8462 | 0.6476 | 0.4476 | 0.6667 |
2018 | 0.4651 | 0.0000 | 0.0000 | 1.0000 | 0.8718 | 0.4476 | 0.3143 | 0.7238 |
2018 | 旅游经济流 | 旅游客流 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | 内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | |
昆明 | 11 | 6 | 受益 | 73.333 | 31.915 | 53.968 | 15 | 14 | 受益 | 100 | 100 | 14.054 |
玉溪 | 4 | 4 | 均衡 | 26.667 | 26.786 | 0.952 | 8 | 9 | 溢出 | 60.000 | 71.429 | 2.312 |
楚雄 | 3 | 3 | 均衡 | 20.000 | 26.786 | 0.764 | 9 | 8 | 受益 | 73.333 | 78.947 | 3.837 |
曲靖 | 2 | 3 | 溢出 | 20.000 | 26.316 | 0.000 | 9 | 8 | 受益 | 60.000 | 71.429 | 1.940 |
昭通 | 0 | 1 | 溢出 | 6.667 | 25.424 | 0.000 | 3 | 3 | 均衡 | 26.667 | 57.692 | 0.000 |
文山 | 0 | 2 | 溢出 | 13.333 | 25.862 | 0.000 | 6 | 5 | 受益 | 40.000 | 62.500 | 0.136 |
红河 | 4 | 2 | 受益 | 26.667 | 26.786 | 0.952 | 9 | 9 | 均衡 | 73.333 | 78.947 | 2.157 |
大理 | 5 | 4 | 受益 | 33.333 | 28.302 | 9.206 | 13 | 14 | 溢出 | 93.333 | 93.750 | 8.895 |
丽江 | 3 | 3 | 均衡 | 20.000 | 27.273 | 11.429 | 11 | 10 | 受益 | 80.000 | 83.333 | 6.288 |
迪庆 | 1 | 1 | 均衡 | 6.667 | 22.388 | 0.000 | 3 | 3 | 均衡 | 20.000 | 55.556 | 0.000 |
怒江 | 0 | 0 | 均衡 | 0.000 | 0.000 | 0.000 | 3 | 5 | 溢出 | 33.333 | 60.000 | 0.000 |
保山 | 2 | 3 | 受益 | 20.000 | 26.786 | 3.651 | 9 | 9 | 均衡 | 66.667 | 75.000 | 1.331 |
德宏 | 1 | 2 | 溢出 | 13.333 | 23.438 | 0.000 | 9 | 8 | 受益 | 66.667 | 75.000 | 1.331 |
普洱 | 1 | 2 | 溢出 | 13.333 | 25.862 | 0.000 | 8 | 8 | 均衡 | 66.667 | 75.000 | 1.399 |
临沧 | 0 | 0 | 均衡 | 0.000 | 0.000 | 0.000 | 7 | 7 | 均衡 | 53.333 | 68.182 | 0.212 |
西双版纳 | 1 | 2 | 溢出 | 13.333 | 25.862 | 0.000 | 7 | 9 | 溢出 | 60.000 | 71.429 | 0.869 |
2018 | 旅游信息流 | 旅游资金流 | ||||||||||
内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | 内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | |
昆明 | 15 | 15 | 均衡 | 100 | 100 | 5.180 | 15 | 0 | 受益 | 100 | 100 | 30.455 |
玉溪 | 7 | 13 | 溢出 | 86.667 | 88.235 | 2.460 | 4 | 2 | 受益 | 40.000 | 62.500 | 1.349 |
楚雄 | 7 | 9 | 溢出 | 73.333 | 78.947 | 0.864 | 8 | 1 | 受益 | 60.000 | 71.429 | 8.333 |
曲靖 | 9 | 14 | 溢出 | 93.333 | 93.750 | 4.222 | 0 | 3 | 溢出 | 20.000 | 55.560 | 0.106 |
昭通 | 5 | 5 | 均衡 | 46.667 | 65.217 | 0.000 | 0 | 3 | 溢出 | 20.000 | 55.560 | 0.106 |
文山 | 7 | 5 | 受益 | 53.333 | 68.182 | 0.000 | 0 | 3 | 溢出 | 20.000 | 55.560 | 0.106 |
红河 | 4 | 13 | 溢出 | 86.667 | 88.235 | 2.330 | 13 | 1 | 受益 | 93.333 | 93.750 | 27.619 |
大理 | 14 | 15 | 溢出 | 100 | 100 | 5.180 | 2 | 2 | 均衡 | 26.667 | 57.692 | 0.159 |
丽江 | 15 | 7 | 受益 | 100 | 100 | 5.180 | 2 | 2 | 均衡 | 26.667 | 57.692 | 0.159 |
迪庆 | 3 | 4 | 溢出 | 33.333 | 60.000 | 0.000 | 0 | 6 | 溢出 | 40.000 | 62.500 | 1.646 |
怒江 | 7 | 2 | 受益 | 53.333 | 68.182 | 0.212 | 0 | 6 | 溢出 | 40.000 | 62.500 | 1.646 |
保山 | 5 | 8 | 溢出 | 60.000 | 71.429 | 0.635 | 0 | 3 | 溢出 | 20.000 | 55.556 | 0.106 |
德宏 | 6 | 6 | 均衡 | 53.333 | 68.182 | 0.212 | 0 | 4 | 溢出 | 26.667 | 57.692 | 0.296 |
普洱 | 6 | 6 | 均衡 | 53.333 | 68.182 | 0.000 | 0 | 2 | 溢出 | 13.333 | 53.571 | 0.000 |
临沧 | 11 | 5 | 受益 | 73.333 | 78.947 | 0.864 | 0 | 4 | 溢出 | 26.667 | 57.692 | 0.296 |
西双版纳 | 14 | 8 | 受益 | 93.333 | 93.750 | 4.091 | 0 | 2 | 溢出 | 13.333 | 53.571 | 0.000 |
表2 云南省旅游流空间网络节点指标(2018)
Tab.2 The index of space network node of tourism flow in Yunnan Province (2018)
2018 | 旅游经济流 | 旅游客流 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | 内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | |
昆明 | 11 | 6 | 受益 | 73.333 | 31.915 | 53.968 | 15 | 14 | 受益 | 100 | 100 | 14.054 |
玉溪 | 4 | 4 | 均衡 | 26.667 | 26.786 | 0.952 | 8 | 9 | 溢出 | 60.000 | 71.429 | 2.312 |
楚雄 | 3 | 3 | 均衡 | 20.000 | 26.786 | 0.764 | 9 | 8 | 受益 | 73.333 | 78.947 | 3.837 |
曲靖 | 2 | 3 | 溢出 | 20.000 | 26.316 | 0.000 | 9 | 8 | 受益 | 60.000 | 71.429 | 1.940 |
昭通 | 0 | 1 | 溢出 | 6.667 | 25.424 | 0.000 | 3 | 3 | 均衡 | 26.667 | 57.692 | 0.000 |
文山 | 0 | 2 | 溢出 | 13.333 | 25.862 | 0.000 | 6 | 5 | 受益 | 40.000 | 62.500 | 0.136 |
红河 | 4 | 2 | 受益 | 26.667 | 26.786 | 0.952 | 9 | 9 | 均衡 | 73.333 | 78.947 | 2.157 |
大理 | 5 | 4 | 受益 | 33.333 | 28.302 | 9.206 | 13 | 14 | 溢出 | 93.333 | 93.750 | 8.895 |
丽江 | 3 | 3 | 均衡 | 20.000 | 27.273 | 11.429 | 11 | 10 | 受益 | 80.000 | 83.333 | 6.288 |
迪庆 | 1 | 1 | 均衡 | 6.667 | 22.388 | 0.000 | 3 | 3 | 均衡 | 20.000 | 55.556 | 0.000 |
怒江 | 0 | 0 | 均衡 | 0.000 | 0.000 | 0.000 | 3 | 5 | 溢出 | 33.333 | 60.000 | 0.000 |
保山 | 2 | 3 | 受益 | 20.000 | 26.786 | 3.651 | 9 | 9 | 均衡 | 66.667 | 75.000 | 1.331 |
德宏 | 1 | 2 | 溢出 | 13.333 | 23.438 | 0.000 | 9 | 8 | 受益 | 66.667 | 75.000 | 1.331 |
普洱 | 1 | 2 | 溢出 | 13.333 | 25.862 | 0.000 | 8 | 8 | 均衡 | 66.667 | 75.000 | 1.399 |
临沧 | 0 | 0 | 均衡 | 0.000 | 0.000 | 0.000 | 7 | 7 | 均衡 | 53.333 | 68.182 | 0.212 |
西双版纳 | 1 | 2 | 溢出 | 13.333 | 25.862 | 0.000 | 7 | 9 | 溢出 | 60.000 | 71.429 | 0.869 |
2018 | 旅游信息流 | 旅游资金流 | ||||||||||
内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | 内向集聚 | 外向辐射 | 受益与否 | 点度中心度 | 接近中心度 | 中间中心度 | |
昆明 | 15 | 15 | 均衡 | 100 | 100 | 5.180 | 15 | 0 | 受益 | 100 | 100 | 30.455 |
玉溪 | 7 | 13 | 溢出 | 86.667 | 88.235 | 2.460 | 4 | 2 | 受益 | 40.000 | 62.500 | 1.349 |
楚雄 | 7 | 9 | 溢出 | 73.333 | 78.947 | 0.864 | 8 | 1 | 受益 | 60.000 | 71.429 | 8.333 |
曲靖 | 9 | 14 | 溢出 | 93.333 | 93.750 | 4.222 | 0 | 3 | 溢出 | 20.000 | 55.560 | 0.106 |
昭通 | 5 | 5 | 均衡 | 46.667 | 65.217 | 0.000 | 0 | 3 | 溢出 | 20.000 | 55.560 | 0.106 |
文山 | 7 | 5 | 受益 | 53.333 | 68.182 | 0.000 | 0 | 3 | 溢出 | 20.000 | 55.560 | 0.106 |
红河 | 4 | 13 | 溢出 | 86.667 | 88.235 | 2.330 | 13 | 1 | 受益 | 93.333 | 93.750 | 27.619 |
大理 | 14 | 15 | 溢出 | 100 | 100 | 5.180 | 2 | 2 | 均衡 | 26.667 | 57.692 | 0.159 |
丽江 | 15 | 7 | 受益 | 100 | 100 | 5.180 | 2 | 2 | 均衡 | 26.667 | 57.692 | 0.159 |
迪庆 | 3 | 4 | 溢出 | 33.333 | 60.000 | 0.000 | 0 | 6 | 溢出 | 40.000 | 62.500 | 1.646 |
怒江 | 7 | 2 | 受益 | 53.333 | 68.182 | 0.212 | 0 | 6 | 溢出 | 40.000 | 62.500 | 1.646 |
保山 | 5 | 8 | 溢出 | 60.000 | 71.429 | 0.635 | 0 | 3 | 溢出 | 20.000 | 55.556 | 0.106 |
德宏 | 6 | 6 | 均衡 | 53.333 | 68.182 | 0.212 | 0 | 4 | 溢出 | 26.667 | 57.692 | 0.296 |
普洱 | 6 | 6 | 均衡 | 53.333 | 68.182 | 0.000 | 0 | 2 | 溢出 | 13.333 | 53.571 | 0.000 |
临沧 | 11 | 5 | 受益 | 73.333 | 78.947 | 0.864 | 0 | 4 | 溢出 | 26.667 | 57.692 | 0.296 |
西双版纳 | 14 | 8 | 受益 | 93.333 | 93.750 | 4.091 | 0 | 2 | 溢出 | 13.333 | 53.571 | 0.000 |
参数 | 相关分析 | 回归分析 | ||||
---|---|---|---|---|---|---|
2012 | 2015 | 2018 | 2012 | 2015 | 2018 | |
旅游客流 | 0.545*** | 0.500*** | 0.402*** | 0.409*** | 0.416*** | 0.514*** |
旅游信息流 | 0.389*** | 0.331*** | 0.336*** | 0.121** | 0.123* | 0.128** |
旅游资金流 | 0.260*** | 0.302* | 0.237* | 0.241*** | 0.230*** | 0.104* |
0.317 | 0.318 | 0.367 | ||||
调整后 | 0.311 | 0.312 | 0.362 |
表3 云南省旅游流空间网络影响因素的QAP回归结果
Tab.3 The regression result of QAP on the influence factors of space network for tourism flow in Yunnan Province
参数 | 相关分析 | 回归分析 | ||||
---|---|---|---|---|---|---|
2012 | 2015 | 2018 | 2012 | 2015 | 2018 | |
旅游客流 | 0.545*** | 0.500*** | 0.402*** | 0.409*** | 0.416*** | 0.514*** |
旅游信息流 | 0.389*** | 0.331*** | 0.336*** | 0.121** | 0.123* | 0.128** |
旅游资金流 | 0.260*** | 0.302* | 0.237* | 0.241*** | 0.230*** | 0.104* |
0.317 | 0.318 | 0.367 | ||||
调整后 | 0.311 | 0.312 | 0.362 |
1 | Boniface B, Cooper C. The geography of travel and tourism.Oxford:Butterworth-Heinemann,1994:1-6. |
2 | Chen Y H, Kang H H. Analysis of tourist flow from the US to Taiwan. Acta Oeconomica,2015,65(2):369-384. |
3 | 罗秋菊,梁思贤.基于数字足迹的自驾车旅游客流时空特征研究——以云南省为例.旅游学刊,2016,31(12):41-50. |
Luo Q, Liang S. Temporal and spatial characteristics of self-driving tourist flows based on tourism digital footprints: A case study in Yunnan Province. Tourism Tribune,2016,31(12):41-50. | |
4 | 戢晓峰,李康康,陈方.节假日旅游流时空分异及其形成机制——以云南省为例.经济地理,2018,38(03):200-207. |
Ji X, Li K Chen F. Study on spatial and temporal differentiation of holiday tourism flow and its formation mechanism: A case study of Yunnan Province. Economic Geography,2018,38(03):200-207. | |
5 | 张佑印,顾静,马耀峰,等.北京入境旅游流分级扩散模式及动力机制分析.人文地理,2012,27(05):120-127. |
Zhang Y, Gu J, Ma Y, et al. Study on diffusion model and dynamic mechanism of Beijing inbound tourists' flow. Human Geography,2012,27(05):120-127. | |
6 | 刘大均.长江中游城市群旅游流空间格局及发展模式.经济地理,2018,38(05):217-223. |
Liu D. Spatial pattern and development model of tourist flow in urban agglomeration in the middle reaches of the Yangtze River. Economic Geography,2018,38(05):217-223. | |
7 | Kim S S, Prideaux B, Timothy D. Factors affecting bilateral Chinese and Japanese travel. Annals of Tourism Research,2016,61:80-95. |
8 | Balli F, Balli H O, Louis R J. The impacts of immigrants and institutions on bilateral tourism flows. Tourism Management,2016,52:221-229. |
9 | 杨兴柱,顾朝林,王群.旅游流驱动力系统分析.地理研究,2011,30(01):23-36. |
Yang X, Gu C, Wang Q. Study on the driving force of tourist flows. Geographical Research,2011,30(01):23-36. | |
10 | Shih H Y. Network characteristics of drive tourism destinations: An application of network analysis in tourism. Tourism Management,2006,27(5):1029-1039. |
11 | 周慧玲,王甫园.基于修正引力模型的中国省际旅游者流空间网络结构特征.地理研究,2020,39(03):669-681. |
Zhou H, Wang F. Research on structure characteristics of the inter-provincial tourist flow spatial network in China based on the modified gravity model. Geographical Research,2020,39(03):669-681. | |
12 | 周李,吴殿廷,虞虎,等.基于网络游记的城市旅游流网络结构演化研究——以北京市为例.地理科学,2020,40(02):298-307. |
Zhou L, Wu D, Yu H, et al. Evolution of urban tourism flow network structure based on network travel notes: A case study of Beijing City. Scientia Geographica Sinica, 2020,40(02):298-307. | |
13 | 李蕊蕊,赵伟,陈思雯.厦门城市自助游网络结构及机制研究.世界地理研究,2019,28(04):211-220. |
Li R, Zhao W, Chen S. Research on network structure and mechanism of urban self-help tour in Xiamen City. World Regional Studies,2019,28(04):211-220. | |
14 | 张红霞,苏勤,张影莎.社会网络分析在国外旅游研究中的应用进展.地理科学进展,2019,38(04):520-532. |
Zhang H, Su Q, Zhang Y. Progress in the application of social network analysis in international tourism research. Progress in Geography,2019,38(04):520-532. | |
15 | 蔚海燕,戴泽钒,许鑫,等.上海迪士尼对上海旅游流网络的影响研究——基于驴妈妈游客数字足迹的视角.旅游学刊,2018,33(04):33-45. |
Wei H, Dai Z, Xu X, et al. The impact of Shanghai Disneyland on Shanghai's tourist flow network: From the perspective of tourists' digital footprints on the Lvmama website. Tourism Tribune,2018,33(04):33-45. | |
16 | 王凯,甘畅,杨亚萍,等.长江中游城市群市域旅游经济网络结构演变及其驱动因素.地理与地理信息科学,2019,35(05):118-125. |
Wang K, Gan C, Yang Y, et al. Evolution and driving factors of urban tourism economic network structure in urban agglomeration in the middle reaches of the Yangtze River. Geography and Geo-Information Science,2019,35(05):118-125. | |
17 | 马丽君,龙云.基于社会网络分析法的中国省际入境旅游经济增长空间关联性.地理科学,2017,37(11):1705-1711. |
Ma L, Long Y. The spatial correlation of economic growth of inbound tourism in China based on social network analysis. Scientia Geographica Sinica,2017,37(11):1705-1711. | |
18 | 王新越,曹婵婵.基于网络游记的青岛市国内旅游客源市场结构与旅游流时空特征分析.地理科学,2019,39(12):1919-1928. |
Wang X, Cao C. Domestic tourist market structure and spatial-temporal characteristics of tourism flow in Qingdao City based on online travel notes. Scientia Geographica Sinica,2019,39(12):1919-1928. | |
19 | 唐顺铁,郭来喜.旅游流体系研究.旅游学刊,1998(03):38-41. |
Tang S, Guo L. Study on the tourism flow system. Tourism Tribune,1998(03):38-41. | |
20 | 普拉提·莫合塔尔,伊力亚斯·加拉力丁,白克拉木·孜克利亚.新疆旅游经济网络特征演变及驱动分析.黑龙江民族丛刊,2017(03):99-104. |
Pu L, Bai K. Evolution and driving factors of tourism economic network structure in Xinjiang. Heilongjiang National Series,2017(03):99-104. | |
21 | 王俊,夏杰长.中国省域旅游经济空间网络结构及其影响因素研究——基于QAP方法的考察.旅游学刊,2018,33(09):13-25. |
Wang J, Xia J. Study on the spatial network structure of the tourism economy in china and its influencing factors: Investigation of QAP method. Tourism Tribune,2018,33(09):13-25. | |
22 | 王馨,管卫华.江苏旅游经济联系的空间结构及其驱动机制研究.现代城市研究,2018(10):45-51. |
Wang X, Guan W. Research on the spatial structure and mechanism of tourism economy in Jiangsu Province. Modern Urban Studies,2018(10):45-51. | |
23 | 张鲜鲜,李婧晗,左颖,等.基于数字足迹的游客时空行为特征分析——以南京市为例.经济地理,2018,38(12):226-233. |
Zhang X, Li J, Zuo Y, et al. Study on spatial-temporal characteristics of tourist behavior based on digital footprints:Taking Nanjing for Example. Economic Geography,2018,38(12):226-233. | |
24 | 彭红松,陆林,路幸福,等.基于社会网络方法的跨界旅游客流网络结构研究——以泸沽湖为例.地理科学,2014,34(09):1041-1050. |
Peng H, Lu L, Lu X, et al. The network structure of cross-border tourism flow based on the social network method: A case of Lugu Lake region. Scientia Geographica Sinica,2014,34(09):1041-1050. | |
25 | 李山,邱荣旭,陈玲.基于百度指数的旅游景区络空间关注度:时间分布及其前兆效应.地理与地理信息科学,2008(06):102-107. |
Li S, Qiu R, Chen L. Cyberspace attention of tourist attractions based on Baidu index: Temporal distribution and precursor effect. Geography and Geo-Information Science,2008(06):102-107. | |
26 | 黄先开,张丽峰,丁于思.百度指数与旅游景区游客量的关系及预测研究——以北京故宫为例.旅游学刊,2013,28(11):93-100. |
Huang X, Zhang L, Ding Y. Study on the predictive and relationship between tourist attractions and the Baidu index: A case study of the Forbidden City. Tourism Tribune,2013,28(11):93-100. | |
27 | 周慧玲,许春晓.中国城市旅游信息流空间网络结构特征分析.统计与决策,2019,35(20):91-94. |
Zhou H, Xu C. Analysis on spatial network structure's characteristics of China's urban tourism information flow. Statistics and Decision-making,2019,35(20):91-94. |
[1] | 沈泽洲, 王承云. 上海参与全球科技创新网络地位研究[J]. 世界地理研究, 2023, 32(2): 93-103. |
[2] | 张小青, 张建新, 刘培学, 魏瑞兵, 唐璐. 边疆省域旅游流的网络结构及影响因素[J]. 世界地理研究, 2022, 31(4): 837-848. |
[3] | 王瑞莉, 刘玉, 王成新, 李梦程, 唐永超, 薛明月. 黄河流域经济联系及其网络结构演变研究[J]. 世界地理研究, 2022, 31(3): 527-537. |
[4] | 李云涛, 陶犁. 基于地理探测器的云南省边境州市旅游发展水平空间分异及影响因素分析[J]. 世界地理研究, 2022, 31(3): 624-636. |
[5] | 吴丽君, 朱宇, 颜俊, 柯文前, 林李月. “一带一路”沿线国家或地区间人口迁移的空间格局及其演化特征[J]. 世界地理研究, 2022, 31(2): 249-258. |
[6] | 张芳芳, 刘慧, 宋涛, 叶尔肯·吾扎提null. 中南半岛地缘综合风险评价与机制分析[J]. 世界地理研究, 2021, 30(6): 1151-1162. |
[7] | 杨雨, 盛科荣. 中国城市网络关联格局的演变及影响因素:基于企业网络视角[J]. 世界地理研究, 2021, 30(6): 1208-1218. |
[8] | 叶滨鸿, 程杨, 王利, 李东晔, 杨林生. 北极地区地缘经济关系演变研究[J]. 世界地理研究, 2021, 30(2): 234-244. |
[9] | 李雨婕, 肖黎明. 中国绿色金融网络空间结构特征及影响因素分析[J]. 世界地理研究, 2021, 30(1): 101-113. |
[10] | 李倩, 曲凌雁. 城市旅游流网络结构特征及其影响因素[J]. 世界地理研究, 2021, 30(1): 114-124. |
[11] | 张清源, 李磊, 陆林. 旅游体验视角下旅游流网络结构比较研究[J]. 世界地理研究, 2020, 29(6): 1213-1225. |
[12] | 梅大伟, 修春亮, 冯兴华. 中国城市信息网络结构演变特征及驱动因素分析[J]. 世界地理研究, 2020, 29(4): 717-727. |
[13] | 谢诗光. 浙江省县际经济联系网络结构演化分析[J]. 世界地理研究, 2020, 29(4): 738-749. |
[14] | 陈俊营, 方俊智. 产品内分工视角下全球制造业生产网络的演化特征[J]. 世界地理研究, 2020, 29(4): 792-803. |
[15] | 贺良辉, 薛德升. 环中国南海周边国家及地区地缘经贸关系动态演化探析[J]. 世界地理研究, 2020, 29(3): 469-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||