世界地理研究 ›› 2023, Vol. 32 ›› Issue (6): 119-130.DOI: 10.3969/j.issn.1004-9479.2023.06.2021567
• 城市与产业 • 上一篇
收稿日期:
2021-08-11
修回日期:
2021-12-22
出版日期:
2023-06-19
发布日期:
2023-08-07
通讯作者:
陈智岩
作者简介:
包振山(1984—),男,博士,副教授,硕士生导师,主要研究方向为商业经济,E-mail: baozhenshan@126.com。
基金资助:
Zhenshan BAO1(), Zhiyan CHEN2()
Received:
2021-08-11
Revised:
2021-12-22
Online:
2023-06-19
Published:
2023-08-07
Contact:
Zhiyan CHEN
摘要:
便利店作为城市零售商业的主要载体,其合理的空间分布对实施扩大内需战略和畅通经济循环至关重要。基于南京市POI数据,运用核密度估计、缓冲区分析、有序多分类Logistic等研究方法,探讨南京市便利店空间分布特征及区位选择成因。研究发现:(1)南京市便利店空间分布总体呈现“一主多副”的不均衡发展格局,集中分布在江南主城区,小范围聚集在江北新主城区,低密度零星分布在副城区;(2)基于道路格网单元、地铁站点的便利店热点区分布与识别,发现便利店沿道路分布特征明显,与地铁站点相平行分布特征突出,但在不同站点的分布差异较大;(3)各品牌便利店的空间集聚特征表现不同,但与各自的品牌定位、经营战略等基本吻合,与城市商圈布局相得益彰;(4)交通、人口、租金等因素影响便利店的空间分布,且影响程度存在差异。研究结果可为优化商业网点空间布局及商业规划等提供科学依据和理论支撑。
包振山, 陈智岩. 基于POI数据的南京市便利店空间分布特征及影响因素[J]. 世界地理研究, 2023, 32(6): 119-130.
Zhenshan BAO, Zhiyan CHEN. Spatial distribution characteristics and influencing factors of convenience stores in Nanjing based on POI data[J]. World Regional Studies, 2023, 32(6): 119-130.
品牌 | 标准差椭圆 | ||
---|---|---|---|
X轴长度 | Y轴长度 | 方向角度 | |
苏宁小店 | 30 408.851 | 11 930.155 | 166.433 |
苏果 | 17 502.746 | 7 977.781 | 170.213 |
罗森 | 11 452.465 | 9 142.150 | 170.351 |
便利蜂 | 8 768.439 | 7 975.133 | 165.428 |
表1 南京市品牌便利店标准差椭圆比较
Tab.1 Comparison of standard deviation ellipse of Nanjing brand convenience store
品牌 | 标准差椭圆 | ||
---|---|---|---|
X轴长度 | Y轴长度 | 方向角度 | |
苏宁小店 | 30 408.851 | 11 930.155 | 166.433 |
苏果 | 17 502.746 | 7 977.781 | 170.213 |
罗森 | 11 452.465 | 9 142.150 | 170.351 |
便利蜂 | 8 768.439 | 7 975.133 | 165.428 |
品牌 | 城市快速道 | 城市主干道 | 城市次干道 | 城市支路 |
---|---|---|---|---|
合计 | 83 | 121 | 147 | 127 |
苏宁小店 | 13 | 24 | 24 | 28 |
苏果 | 30 | 48 | 78 | 65 |
罗森 | 17 | 21 | 18 | 19 |
便利蜂 | 23 | 28 | 27 | 15 |
表2 南京市城市道路等级与品牌便利店数量 (家)
Tab.2 Nanjing city road grade and number of brand convenience stores
品牌 | 城市快速道 | 城市主干道 | 城市次干道 | 城市支路 |
---|---|---|---|---|
合计 | 83 | 121 | 147 | 127 |
苏宁小店 | 13 | 24 | 24 | 28 |
苏果 | 30 | 48 | 78 | 65 |
罗森 | 17 | 21 | 18 | 19 |
便利蜂 | 23 | 28 | 27 | 15 |
项目 | 品牌便利店 | 苏宁小店 | 苏果 | 罗森 | 便利蜂 |
---|---|---|---|---|---|
平均观测距离/m | 505.722 | 1 366.011 | 767.562 | 1 291.630 | 919.160 |
预期平均距离/m | 1392.606 | 3305.721 | 1944.760 | 1963.312 | 1404.515 |
最邻近比率 | 0.363 | 0.413 | 0.395 | 0.658 | 0.654 |
z得分 | -31.133 | -10.767 | -20.876 | -6.479 | -7.766 |
p值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
表3 平均距离汇总
Tab.3 Average distance summary
项目 | 品牌便利店 | 苏宁小店 | 苏果 | 罗森 | 便利蜂 |
---|---|---|---|---|---|
平均观测距离/m | 505.722 | 1 366.011 | 767.562 | 1 291.630 | 919.160 |
预期平均距离/m | 1392.606 | 3305.721 | 1944.760 | 1963.312 | 1404.515 |
最邻近比率 | 0.363 | 0.413 | 0.395 | 0.658 | 0.654 |
z得分 | -31.133 | -10.767 | -20.876 | -6.479 | -7.766 |
p值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
变量 | 衡量指标 | 编码 | 说明 | 样本均值(标准差) |
---|---|---|---|---|
因变量 | 便利店所在的空间位置 | Y | 1表示一环以内;2表示一环至二环;3表示二环至三环;4表示三环以外 | 2.564(1.204) |
自变量 | 便利店品牌 | X1 | 1表示苏宁小店;2表示苏果;3表示罗森;4表示便利蜂 | 2.432(0.975) |
人口密度/(万人/km2) | X2 | 《南京市统计年鉴》各区县关于便利店所在区域的人口密度 | 0.861(0.801) | |
聚集特征 | X3 | 便利店网点周边300 m范围内便利店网点的个数 | 0.883(1.485) | |
道路密度(km/km2) | X4 | 1表示0~0.93;2表示0.93~0.61;3表示0.61~2.03;4表示2.03以上 | 2.612(1.168) | |
交通通达性 | X5 | 1表示便利店周边600 m范围内有地铁站;0表示便利店周边600 m范围内无地铁站 | 0.380(0.486) | |
租金 | X6 | 依据2017年南京市国土资源局公布的《南京市市区土地级别与基准地价》,1表示Ⅰ级;2表示Ⅱ级;3表示Ⅲ级;4表示Ⅳ级(Ⅰ级最高) | 2.254(1.087) |
表4 南京市品牌便利店空间分布影响因素、指标选取及说明
Tab.4 Influencing factors, index and explanation of spatial distribution of brand convenience stores in Nanjing
变量 | 衡量指标 | 编码 | 说明 | 样本均值(标准差) |
---|---|---|---|---|
因变量 | 便利店所在的空间位置 | Y | 1表示一环以内;2表示一环至二环;3表示二环至三环;4表示三环以外 | 2.564(1.204) |
自变量 | 便利店品牌 | X1 | 1表示苏宁小店;2表示苏果;3表示罗森;4表示便利蜂 | 2.432(0.975) |
人口密度/(万人/km2) | X2 | 《南京市统计年鉴》各区县关于便利店所在区域的人口密度 | 0.861(0.801) | |
聚集特征 | X3 | 便利店网点周边300 m范围内便利店网点的个数 | 0.883(1.485) | |
道路密度(km/km2) | X4 | 1表示0~0.93;2表示0.93~0.61;3表示0.61~2.03;4表示2.03以上 | 2.612(1.168) | |
交通通达性 | X5 | 1表示便利店周边600 m范围内有地铁站;0表示便利店周边600 m范围内无地铁站 | 0.380(0.486) | |
租金 | X6 | 依据2017年南京市国土资源局公布的《南京市市区土地级别与基准地价》,1表示Ⅰ级;2表示Ⅱ级;3表示Ⅲ级;4表示Ⅳ级(Ⅰ级最高) | 2.254(1.087) |
变量 | 整体 | 苏宁 | 苏果 | 罗森 | 便利蜂 |
---|---|---|---|---|---|
X1 | -0.118 | — | — | — | — |
X2 | -1.784*** | -1.712* | -1.382*** | -1.782*** | -3.513* |
X3 | -0.410*** | -0.768*** | -0.544*** | -0.041 | -0.448*** |
X4=1 | 0.799** | 1.370 | 0.261 | 2.198*** | 1.212* |
X4=2 | -0.653 | 0.744 | 1.038*** | -1.782** | 3.752** |
X4=3 | 1.205*** | 2.196* | 1.143** | 1.089 | 3.767 |
X4=4 | 0 | 0 | 0 | 0 | -2.037 |
X5=0 | 0.960*** | -0.183 | 1.107** | 0.543* | 0.626** |
X5=1 | 0 | 0 | 0 | 0 | 0 |
X6=1 | -3.545*** | -19.181*** | -5.407*** | 0.807 | 3.966 |
X6=2 | -2.534*** | -16.760 | -4.224*** | 0.888 | 0.841 |
X6=3 | -0.396 | -23.317*** | -0.223 | 0.857 | 0.332 |
X6=4 | 0 | 0 | 0 | 0 | 0 |
样本量 | 653 | 92 | 325 | 98 | 138 |
Cox-Snell R2 | 0.718 | 0.875 | 0.727 | 0.905 | 0.898 |
表5 有序多分类logistic回归结果
Tab.5 Logistic regression results of ordered multi classification
变量 | 整体 | 苏宁 | 苏果 | 罗森 | 便利蜂 |
---|---|---|---|---|---|
X1 | -0.118 | — | — | — | — |
X2 | -1.784*** | -1.712* | -1.382*** | -1.782*** | -3.513* |
X3 | -0.410*** | -0.768*** | -0.544*** | -0.041 | -0.448*** |
X4=1 | 0.799** | 1.370 | 0.261 | 2.198*** | 1.212* |
X4=2 | -0.653 | 0.744 | 1.038*** | -1.782** | 3.752** |
X4=3 | 1.205*** | 2.196* | 1.143** | 1.089 | 3.767 |
X4=4 | 0 | 0 | 0 | 0 | -2.037 |
X5=0 | 0.960*** | -0.183 | 1.107** | 0.543* | 0.626** |
X5=1 | 0 | 0 | 0 | 0 | 0 |
X6=1 | -3.545*** | -19.181*** | -5.407*** | 0.807 | 3.966 |
X6=2 | -2.534*** | -16.760 | -4.224*** | 0.888 | 0.841 |
X6=3 | -0.396 | -23.317*** | -0.223 | 0.857 | 0.332 |
X6=4 | 0 | 0 | 0 | 0 | 0 |
样本量 | 653 | 92 | 325 | 98 | 138 |
Cox-Snell R2 | 0.718 | 0.875 | 0.727 | 0.905 | 0.898 |
1 | GEUNES J, PARDALOS P, ROMEIJN H E. Supply Chain Management: Models, Applications, and Research Directions. New York: Springer Science Business Media, 2002. |
2 | GUHA A, GREWAL D, KOPALLE P K, et al. How artificial intelligence will affect the future of retailing. Journal of Retailing, 2021, 97(1): 28-41. |
3 | BRADLOW E T, GANGWAR M, KOPALLE P, et al. The role of big data and predictive analytics in retailing. Journal of Retailing, 2017, 93(1):79-95. |
4 | 张俊娥,王东,魏宇. 黑龙江省城市商业网点空间集聚特征及影响因素分析. 商业研究, 2018(3): 138-142. |
ZHANG J, WANG D, WEI Y. An analysis of spatial clustering characteristics of urban commercial network in Heilongjiang Province and its influence factors. Commercial Research, 2018 (3):138-142. | |
5 | 汪凡,林玥希,汪明峰. 第三空间还是无限场景: 新零售的区位选择与影响因素研究. 地理科学进展, 2020, 39(9): 1522-1531. |
WANG F, LIN Y, WANG M. "Third space" or "infinite occasion": Location choice and influencing factors of the new retail industry. Progress in Geography, 2020, 39 (9):1522-1531. | |
6 | 李花,张志斌,王伟军. 兰州市大中型超市的空间分布格局及其影响因素. 经济地理, 2016, 36(9): 85-93. |
LI H, ZHANG Z, WANG W. Spatial distribution and patterns and influential factors of large and medium supermarkets in Lanzhou. Economic Geography, 2016, 36 (9):85-93. | |
7 | 樊立惠,王鹏飞. 中国农产品批发市场时空演化与商品化效应. 经济地理, 2019, 39(7): 175-183. |
FAN L, WANG P. The spatial and temporal evolution of China's wholesale market for agricultural products and it's commodification effect. Economic Geography, 2019, 39 (7):175-183. | |
8 | 王靓,罗雯婷,李亚娟. 城市零售业热点区演变特征及驱动机制研究——以武汉市为例. 世界地理研究, 2021, 30(6): 1265-1274. |
WANG J, LUO W, LI Y. Research on the evolution characteristics and driving mechanism of hot spots in urban retail industry--A case study of Wuhan. World Regional Studies, 2021, 30(6):1265-1274. | |
9 | 岳丽莹,李山,李开明,等. 商圈惠顾行为的空间衰减: 幂律模式还是指数模式. 地理科学, 2021, 41(3): 446-453. |
YUE L, LI S, LI K, et al. The spatial decay of patronizing behavior in trade areas: Power law or exponential law. Scientia Geographica Sinica, 2021, 41(3):446-453. | |
10 | 林玥希,汪明峰. 中国新零售的空间分布与区位选择. 经济地理, 2020, 40(12): 109-118. |
LIN Y, WANG M. Spatial distribution and location strategy of the "new retail" in China. Economic Geography, 2020, 40 (12):109-118. | |
11 | 肖琛,陈雯,袁丰,等. 大城市内部连锁超市空间分布格局及其区位选择——以南京市苏果超市为例. 地理研究, 2013, 32(3): 465-475. |
XIAO C, CHEN W, YUAN F, et al. Spatial pattern and location decision of chain supermarkets within large cities: A case study of Suguo supermarkets in Nanjing. Geographical Research, 2013, 32 (3):465-475. | |
12 | 张圣忠,柴廷熠. 西安市物流企业空间格局演化及影响因素分析. 世界地理研究, 2021, 30(6): 1275-1285. |
ZHANG S, CHAI T. Analysis of spatial pattern evolution and influencing factors of logistics enterprises in Xi'an. World Regional Studies, 2021, 30(6):1275-1285. | |
13 | 张家旗,刘晏男,宋斌玢. 基于POI数据的郑州市主城区生活服务业空间分布特征研究. 世界地理研究, 2022, 31(2): 399-409. |
ZHANG J, LIU Y, SONG B. Study on the spatial distribution characteristics of life service industry in the main urban area of Zhengzhou City based on POI data. World Regional Studies, 2022, 31(2):399-409. | |
14 | 张逸姬,甄峰,张逸群. 社区O2O零售业的空间特征及影响因素——以南京市为例. 经济地理, 2019, 39(11): 104-112. |
ZHANG Y, ZHEN F, ZHANG Y. Adoption of O2O strategies by community retailers in Nanjing. Economic Geography, 2019, 39 (11):104-112. | |
15 | 吴也白,梁绍连. 上海药品零售行业科学布局和创新发展研究. 上海经济, 2017(5): 62-70. |
WU Y, LIANG S. The spatial distribution and scientific development of retail pharmacies in Shanghai. Shanghai Economy, 2017 (5):62-70. | |
16 | 涂建军,唐思琪,张骞,等. 山地城市格局对餐饮业区位选择影响的空间异质性. 地理学报, 2019, 74(6): 1163-1177. |
TU J, TANG S, ZHANG Q, et al. Spatial heterogeneity of the effects of mountainous city pattern on catering industry location. Acta Geographica Sinica, 2019, 74(6):1163-1177. | |
17 | 应小宇,阚琪. 杭州商业街道空间布局形态关键要素对周边风环境的影响. 地理科学, 2018, 38(12): 2093-2099. |
YING X, YI Q. The influence of street spatial layout factors on wind environment in Hangzhou, Zhejiang. Scientia Geographica Sinica, 2018, 38(12):2093-2099. | |
18 | ANDERSON W P, CHATTERJEE L, LAKSHMANMAN T R. E-commerce, transportation, and economic geography. Growth&Change, 2003, 34(4): 415-432. |
19 | 史坤博,杨永春,白硕,等. 技术扩散还是效率优先——基于"美团网"的中国O2O电子商务空间渗透探讨. 地理研究, 2018, 37(4): 783-796. |
SHI K, YANG Y, BAI S, et al. Innovation diffusion hypothesis or efficiency hypothesis: Spatial penetration of online-to-offline e-commerce in China based on Meituan.com. Geographical Research, 2018, 37(4): 783-796. | |
20 | 李雪,谷人旭. 上海市品牌便利店的空间分布及其影响因素. 城市问题, 2019(4): 36-46. |
LI X, GU R. Spatial distribution and influencing factors of Shanghai brand convenience stores. Urban Problems, 2019 (4): 36-46. | |
21 | 浩飞龙,王士君,冯章献,等. 基于POI数据的长春市商业空间格局及行业分布. 地理研究, 2018, 37(2): 366-378. |
HAO F, WANG S, FENG Z, et al. Spatial pattern and its industrial distribution of commercial space in Changchun based on POI data. Geographical Research, 2018, 37(2): 366-378. | |
22 | 段亚明,刘勇,刘秀华,等. 基于POI大数据的重庆主城区多中心识别. 自然资源学报, 2018, 33(5): 788-800. |
DUAN Y, LIU Y, LIU X, et al. Identification of polycentric urban structure of central Chongqing using points of interest big data. Journal of Natural Resources, 2018, 33(5): 788-800. | |
23 | 刘承良,薛帅君. 上海市主城区公共服务设施网点分布的空间异质性. 人文地理, 2019, 34(1): 122-130. |
LIU C, XUE S. Spatial heterogeneity of public service facilities in central Shanghai. Human Geography, 2019, 34(1): 122-130. | |
24 | 彼得·卡尔索普. 未来美国大都市: 生态·社区·美国梦. 郭亮, 译. 北京: 中国建筑工业出版社, 2009. |
CALTHORP P. The Next American Metropolis: Ecology, Community, and the American Dream. Translated by GUO L. Beijing: China Architecture & Building Press, 2009. | |
25 | 刘泉. 轨道交通TOD地区的步行尺度. 城市规划, 2019, 43(3): 88-95. |
LIU Q. Walking scale of TOD area along rail transit line. City Planning Review, 2019, 43(3): 88-95. | |
26 | 王济川,郭志刚. Logistic回归模型:方法与应用. 北京:高等教育出版社, 2001. |
WANG J, GUO Z. Logistic Regression Model: Method and Application. Beijing: Higher Education Press, 2001. |
[1] | 马晓敏, 张志斌, 公维民, 郭燕, 赵学伟. 兰州市都市型工业空间分布及区位选择[J]. 世界地理研究, 2023, 32(4): 119-131. |
[2] | 张家旗, 刘晏男, 宋斌玢. 基于POI数据的郑州市主城区生活服务业空间分布特征研究[J]. 世界地理研究, 2022, 31(2): 399-409. |
[3] | 陈鹏, KURLAND Justin. 职业足球比赛期间球场周边扒窃犯罪的空间分布特征研究[J]. 世界地理研究, 2022, 31(1): 189-200. |
[4] | 王新贤, 高向东. 中国穆斯林人口空间分布及演变特征[J]. 世界地理研究, 2021, 30(6): 1297-1307. |
[5] | 俞路. 高铁新时代下中国铁路交通可达性分布格局及其均衡程度的研究[J]. 世界地理研究, 2020, 29(6): 1148-1160. |
[6] | 王贤, 刘柄麟, 张振克. 非洲外商直接投资的时空变化与影响因素[J]. 世界地理研究, 2020, 29(6): 1125-1135. |
[7] | 贾艳艳, 唐晓岚, 张卓然. 长江中下游流域自然保护地空间分布及其与人类活动强度关系研究[J]. 世界地理研究, 2020, 29(4): 845-855. |
[8] | 刘畅, 冯雨乔. 中国非物质文化遗产在欧洲传播空间分布特征研究[J]. 世界地理研究, 2020, 29(4): 867-874. |
[9] | 段博, 邵传林, 段博. 数字经济加剧了地区差距吗?[J]. 世界地理研究, 2020, 29(4): 728-737. |
[10] | 窦旺胜, 王成新, 薛明月, 王召汉. 基于POI数据的城市用地功能识别与评价研究[J]. 世界地理研究, 2020, 29(4): 804-813. |
[11] | 李卫东, 张铭龙, 段金龙. 基于POI数据的南京市空间格局定量研究[J]. 世界地理研究, 2020, 29(2): 317-326. |
[12] | 徐诗燕, 谷人旭, 林柄全, 许树辉. 集聚外部性对企业区位选择影响分析[J]. 世界地理研究, 2019, 28(3): 123-134. |
[13] | 李桥兴, 李妍. 我国中医药制造业空间布局特征与评价研究[J]. 世界地理研究, 2019, 28(3): 146-154. |
[14] | 徐珍珍 余意峰. 国家全域旅游示范区空间分布及其影响因素[J]. 世界地理研究, 2019, 28(2): 201-208. |
[15] | 王钢,张朝国. 中国民营企业对外直接投资区位选择研究[J]. 世界地理研究, 2013, 22(12): 97-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||