世界地理研究 ›› 2023, Vol. 32 ›› Issue (9): 40-54.DOI: 10.3969/j.issn.1004-9479.2023.09.2021648
收稿日期:
2021-09-11
修回日期:
2022-03-03
出版日期:
2023-09-15
发布日期:
2023-09-25
通讯作者:
刘晔
作者简介:
庄诺亚(2001—),女,研究助理,主要从事城市地理研究,E-mail: Zhuangny@mail2.sysu.edu.cn。
基金资助:
Nuoya ZHUANG(), Fanglin HUA, Yiying LIU, Yuling HUANG, Ye LIU()
Received:
2021-09-11
Revised:
2022-03-03
Online:
2023-09-15
Published:
2023-09-25
Contact:
Ye LIU
摘要:
全球化与城市化背景下,流动性扩大了传染病波及的地域范围,疫情暴发给人类健康与经济社会稳定带来严峻挑战。从地方尺度看,区域多元的自然与社会条件使其在面对疫情时表现出差异化的脆弱性与韧性特征。针对人与人接触传播的传染病类型,基于暴露度、敏感性与适应性三个维度构建地域传染病暴发脆弱性评价指标体系,揭示美国县域传染病暴发脆弱性的空间分异特征,划分脆弱性地域类型,阐明传染病暴发脆弱性强弱的影响机制。结果如下:①整体上,美国县域传染病暴发脆弱性大部分处于较低或低水平,空间分异特征显著;②自然与人为扰动因素驱动下,传染病暴发受暴露度(与外界社会的联系)、敏感性(个体风险、城市环境、经济保障、社会扩散)与适应性(政府应急、医疗系统与社会保障)三个维度综合影响;③基于传染病暴发脆弱性的影响因素得分,将美国县域划分为10个地域类型,具体解析其脆弱性的驱动机制。
庄诺亚, 华芳琳, 刘羿滢, 黄俞菱, 刘晔. 美国传染病暴发脆弱性的空间分异格局与影响机制研究[J]. 世界地理研究, 2023, 32(9): 40-54.
Nuoya ZHUANG, Fanglin HUA, Yiying LIU, Yuling HUANG, Ye LIU. The spatial pattern and determinants of vulnerability to infectious disease outbreaks in the United States[J]. World Regional Studies, 2023, 32(9): 40-54.
图1 美国传染病暴发脆弱性的空间分异水平注:该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2021)5465号的标准地图制作,底图无修改。下同。
Fig.1 Spatially divergent levels of vulnerability to infectious disease outbreaks in the United States
准则层 | 指标层 | 具体指标 | 年份 | 计算方法 | 均值 | 方差 |
---|---|---|---|---|---|---|
暴露度 | 外界社会联系 | 航空客流量a/百万人 | 2019(州级) | 一年内地区总航空客流数(国际+国内) | 24.150 | 833.055 |
来自不同州的迁移人口b/千人 | 2014—2018 | 不同州的迁移人口数 | 2.500 | 50.215 | ||
来自同州内不同县的迁移人口b/千人 | 2014—2018 | 同州不同县迁移人口数 | 3.499 | 54.930 | ||
非法国际移民c/十万人 | 2014—2018(州级) | 非法国际移民数估计数 | 3.444 | 37.302 | ||
合法国际移民c/十万人 | 2014—2018(州级) | 合法国际移民统计数 | 8.601 | 192.309 | ||
跨县通勤人口占比a | 2019—2020 | 跨县日常通勤人数/总人口*100% | 30.118 | 305.489 | ||
敏感性 | 个人健康状况 | 5岁以下人口占比b | 2019 | 5岁以下人口数/总人口数*100% | 5.792 | 1.200 |
65岁以上人口占比b | 2019 | 65岁以上人口数/总人口数*100% | 18.736 | 19.628 | ||
每十万人心脏病死亡人口d/ 人 | 2016—2018 | 心脏病死亡人数/总人数*10万 | 185.599 | 1 896.879 | ||
每十万人中风病死亡人口d/人 | 2016—2018 | 中风病死亡人数/总人数*10万 | 39.917 | 66.715 | ||
糖尿病诊断率d | 2017 | 20岁以上的人口糖尿病率*100% | 10.587 | 12.246 | ||
肥胖率d | 2017 | 20岁以上的人口肥胖率*100% | 32.951 | 31.405 | ||
政治社会背景 | 民主党派支持率e | 2020 | 总投票数/总人口*100% | 33.516 | 241.776 | |
宗教组织数b/ (个/万人) | 2019 | 每万人宗教组织统计数值/总人口 | 9.728 | 25.904 | ||
人口聚集程度 | 人口密度b/ (百人/平方英里) | 2019 | 人口数/地区面积 | 2.702 | 351.702 | |
制度化团体宿舍居住占比b | 2014—2018 | 居住在制度化团体宿舍(包括监狱、养老院等)的人口占比*100% | 3.475 | 18.226 | ||
城市环境条件 | PM2.5浓度d/(µg/m³) | 2016 | 年均PM2.5浓度 | 7.743 | 2.682 | |
空气免疫危险指数f | 2014 | 空气对人体免疫危害评估指数*100 | 1.365 | 0.872 | ||
公共卫生意识 | 25岁以上人口中高中学历及以上人口占比b★ | 2019 | 高中学历以上人口数/总人口数*100% | 86.938 | 35.828 | |
每十万人流行病学家数g/(个/十万人)★ | 2018(州级) | 每十万人中流行病学家数占比 | 54.573 | 854.687 | ||
预防质量指数h★ | 2017 | 通过多种疾病入院率调整的医疗保健研究和预防质量综合指标/10 000 | 0.490 | 0.025 | ||
经济保障水平 | 失业人口占比b | 2019 | 失业人口数/总人口数*100% | 5.286 | 5.836 | |
贫困人口占比b | 2019 | 贫困人口数/总人口数*100% | 14.420 | 32.080 | ||
人均收入b/万美元★ | 2019 | 各县区人均财政收入 | 4.568 | 1.677 | ||
人均卫生支出h/万美元★ | 2014(州级) | 综合各种保险、补助等的人均卫生支出估计值 | 1.590 | 0.029 | ||
适应性 | 政府治理能力 | 政府响应指数i★ | 2019(州级) | 各项政府响应指数求均值 | 19.833 | 6.048 |
社会医疗服务 | 每十万人紧急服务b/ (个/十万人)★ | 2017(州级) | 每10万人提供的紧急服务(包括紧急和救济服务以及独立流动外科和紧急中心) | 2.666 | 0.510 | |
无健康保险人口占比b | 2019 | 无保险人口数/总人口数*100% | 11.339 | 25.233 |
表1 脆弱性指标体系
Tab.1 The vulnerability indicator system
准则层 | 指标层 | 具体指标 | 年份 | 计算方法 | 均值 | 方差 |
---|---|---|---|---|---|---|
暴露度 | 外界社会联系 | 航空客流量a/百万人 | 2019(州级) | 一年内地区总航空客流数(国际+国内) | 24.150 | 833.055 |
来自不同州的迁移人口b/千人 | 2014—2018 | 不同州的迁移人口数 | 2.500 | 50.215 | ||
来自同州内不同县的迁移人口b/千人 | 2014—2018 | 同州不同县迁移人口数 | 3.499 | 54.930 | ||
非法国际移民c/十万人 | 2014—2018(州级) | 非法国际移民数估计数 | 3.444 | 37.302 | ||
合法国际移民c/十万人 | 2014—2018(州级) | 合法国际移民统计数 | 8.601 | 192.309 | ||
跨县通勤人口占比a | 2019—2020 | 跨县日常通勤人数/总人口*100% | 30.118 | 305.489 | ||
敏感性 | 个人健康状况 | 5岁以下人口占比b | 2019 | 5岁以下人口数/总人口数*100% | 5.792 | 1.200 |
65岁以上人口占比b | 2019 | 65岁以上人口数/总人口数*100% | 18.736 | 19.628 | ||
每十万人心脏病死亡人口d/ 人 | 2016—2018 | 心脏病死亡人数/总人数*10万 | 185.599 | 1 896.879 | ||
每十万人中风病死亡人口d/人 | 2016—2018 | 中风病死亡人数/总人数*10万 | 39.917 | 66.715 | ||
糖尿病诊断率d | 2017 | 20岁以上的人口糖尿病率*100% | 10.587 | 12.246 | ||
肥胖率d | 2017 | 20岁以上的人口肥胖率*100% | 32.951 | 31.405 | ||
政治社会背景 | 民主党派支持率e | 2020 | 总投票数/总人口*100% | 33.516 | 241.776 | |
宗教组织数b/ (个/万人) | 2019 | 每万人宗教组织统计数值/总人口 | 9.728 | 25.904 | ||
人口聚集程度 | 人口密度b/ (百人/平方英里) | 2019 | 人口数/地区面积 | 2.702 | 351.702 | |
制度化团体宿舍居住占比b | 2014—2018 | 居住在制度化团体宿舍(包括监狱、养老院等)的人口占比*100% | 3.475 | 18.226 | ||
城市环境条件 | PM2.5浓度d/(µg/m³) | 2016 | 年均PM2.5浓度 | 7.743 | 2.682 | |
空气免疫危险指数f | 2014 | 空气对人体免疫危害评估指数*100 | 1.365 | 0.872 | ||
公共卫生意识 | 25岁以上人口中高中学历及以上人口占比b★ | 2019 | 高中学历以上人口数/总人口数*100% | 86.938 | 35.828 | |
每十万人流行病学家数g/(个/十万人)★ | 2018(州级) | 每十万人中流行病学家数占比 | 54.573 | 854.687 | ||
预防质量指数h★ | 2017 | 通过多种疾病入院率调整的医疗保健研究和预防质量综合指标/10 000 | 0.490 | 0.025 | ||
经济保障水平 | 失业人口占比b | 2019 | 失业人口数/总人口数*100% | 5.286 | 5.836 | |
贫困人口占比b | 2019 | 贫困人口数/总人口数*100% | 14.420 | 32.080 | ||
人均收入b/万美元★ | 2019 | 各县区人均财政收入 | 4.568 | 1.677 | ||
人均卫生支出h/万美元★ | 2014(州级) | 综合各种保险、补助等的人均卫生支出估计值 | 1.590 | 0.029 | ||
适应性 | 政府治理能力 | 政府响应指数i★ | 2019(州级) | 各项政府响应指数求均值 | 19.833 | 6.048 |
社会医疗服务 | 每十万人紧急服务b/ (个/十万人)★ | 2017(州级) | 每10万人提供的紧急服务(包括紧急和救济服务以及独立流动外科和紧急中心) | 2.666 | 0.510 | |
无健康保险人口占比b | 2019 | 无保险人口数/总人口数*100% | 11.339 | 25.233 |
1 | MORENS D M, FOLKERS G K, FAUCI A S. The challenge of emerging and re-emerging infectious diseases. Nature, 2004, 430(6996): 242-249. |
2 | JONES K E, PATEL N G, LEVY M A, et al. Global trends in emerging infectious diseases. Nature, 2008, 451(7181): 990-993. |
3 | BINDER S, LEVITT A M, SACKS J J, et al. Emerging infectious diseases: Public health issues for the 21st century. Science, 1999, 284(5418): 1311. |
4 | JANSSEN M, SCHOON M, KE W, et al. Scholarly networks on resilience, vulnerability and adaptation within the human dimensions of global environmental change. Global Environmental Change, 2006, 16(3): 240-252. |
5 | 李鹤, 张平宇, 程叶青. 脆弱性的概念及其评价方法. 地理科学进展, 2008, 27(2): 18-25. |
LI H, ZHANG P, CHENG Y. Concepts and assessment methods of vulnerability. Progress in Geography, 2008, 27(2): 18-25. | |
6 | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策. 地理学报, 2021, 76(6): 1438-1454. |
YANG R, PAN Y. Spatial patterns, formation mechanism and coping strategies of rural vulnerability in China at the county level. Acta Geography Sinica, 2021, 76(6): 1438-1454. | |
7 | 杨春燕, 王静爱, 苏筠, 等. 农业旱灾脆弱性评价——以北方农牧交错带兴和县为例. 自然灾害学报, 2005, 14(6): 88-93. |
YANG C, WANG J, SU Y, et al. Assessment of agricultural drought vulnerability: Taking Xinghe County in farming pastoral zone in North of China as a case. Journal of Natural Disasters, 2005, 14(6): 88-93. | |
8 | 於琍, 曹明奎, 李克让.全球气候变化背景下生态系统的脆弱性评价.地理科学进展, 2005(1): 61-69. |
WU L, CAO M, LI K. An overview of assessment of ecosystem vulnerability to climate change. Progress in Geography, 2005(1): 61-69. | |
9 | 马骏, 李昌晓, 魏虹, 等. 三峡库区生态脆弱性评价. 生态学报, 2015, 35(21): 7117-7129. |
MA J, LI C, WEI H, et al. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir Region in Chongqing Municipality, China. Acta Ecologica Sinica, 2015, 35(21): 7117-7129. | |
10 | 黄晓军, 王晨, 胡凯丽. 快速空间扩张下西安市边缘区社会脆弱性多尺度评估. 地理学报, 2018, 73(6): 1002-1017. |
HUANG X, WANG C, HU K. Multi-scale assessment of social vulnerability to rapid urban expansion in urban fringe: A case study of Xi'an. Acta Geography Sinica, 2018, 73(6): 1002-1017. | |
11 | 黄晓军, 黄馨, 崔彩兰, 等. 社会脆弱性概念、分析框架与评价方法. 地理科学进展, 2014, 33(11): 1512-1525. |
HUANG X, HUANG X, CUI C, et al. The concept, analytical framework and assessment method of social vulnerability. Progress in Geography, 2014, 33(11): 1512-1525. | |
12 | KHAJEHEI S, AHMADALIPOUR A, SHAO W, et al. A place-based assessment of flash flood hazard and vulnerability in the contiguous United States. Scientific Reports, 2020, 10(1): 448. |
13 | 王五一, 李海蓉, 杨林生, 等. 典型鼠疫疫源地环境-健康脆弱性评价. 地理研究, 2001, 20(3): 290-297. |
WANG W, LI H, YANG L, et al. Assessment of environment-health vulnerability in typical plague foci in China. Geographical Research, 2001, 20(3): 290-297. | |
14 | TURNER B L, KASPERSON R E, MATSON P A, et al. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, 2003, 100(14): 8074. |
15 | SUSAN L C. The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers, 2003, 93(1): 1-12. |
16 | W. N A. Vulnerability. Global Environmental Change, 2006, 16(3): 268-281. |
17 | SANDS P, TURABI A EL, SAYNISCH P A, et al. Assessment of economic vulnerability to infectious disease crises. The Lancet, 2016, 388(10058): 2443-2448. |
18 | CONNOLLY C, KEIL R, ALI S H. Extended urbanization and the spatialities of infectious disease: Demographic change, infrastructure and governance. Urban Studies, 2020, 58(2): 245-263. |
19 | MOORE M, GELFELD B, OKUNOGBE A, et al. Identifying future disease hot spots: Infectious disease vulnerability index. Rand Health Q, 2017, 6(3): 5. |
20 | DE ZWART O, VELDHUIJZEN I K, ELAM G, et al. Perceived threat, risk perception, and efficacy beliefs related to SARS and other (emerging) infectious diseases: Results of an international survey. International Journal of Behavioral Medicine, 2009, 16(1): 30-40. |
21 | 曹志冬, 王劲峰, 高一鸽, 等. 广州SARS流行的空间风险因子与空间相关性特征. 地理学报, 2008(9): 981-993. |
CAO Z, WANG J, GAO Y, et al. Risk factors and autocorrelation characteristics on severe acute respiratory syndrome in Guangzhou. Acta Geography Sinica, 2008(9): 981-993. | |
22 | 杨振, 丁启燕, 王念, 等. 中国人口健康脆弱性地区差异与影响因素分析. 地理科学, 2018, 38(1): 135-142. |
YANG Z, DING Q, WANG N, et al. Distribution characteristics of health vulnerability and its influence factors in China. Scientia Geographica Sinica, 2018, 38(1): 135-142. | |
23 | 程杨, 李海蓉, 杨林生. 中国明清时期疫病时空分布规律的定量研究. 地理研究, 2009, 28(4): 1059-1068. |
CHENG Y, LI H, YANG L. Temporal-spatial distribution of epidemics in Ming and Qing dynasties (1368-1911A.D.) in China. Geographical Research, 2009, 28(4): 1059-1068. | |
24 | 石岩, 王达, 陈袁芳, 等. 流空间邻近关系约束下的流行病分布空间异常探测方法. 测绘学报, 2021, 50(6): 777-788. |
SHI Y, WANG D, Chen Y, et al. An anomaly detection approach from spatio distributions of epidemic based on adjacency constraints in flow space. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 777-788. | |
25 | ALIROL E, GETAZ L, STOLL B, et al. Urbanization and infectious diseases in a globalized world. The Lancet infectious diseases, 2011, 11(2): 131-141. |
26 | KIM D. Exploratory study on the spatial relationship between emerging infectious diseases and urban characteristics: Cases from Korea. Sustainable Cities and Society, 2021, 66: 102672. |
27 | SAKER L, KELLEY L, BARBARA C, et al. Globalization and infectious diseases: A review of the linkages. Geneva,Switzerland: Social, Econmic and Behavioural Research, 2004. |
28 | SAVINI L, CANDELORO L, CALISTRI P,et al.A municipality-based approach using commuting census data to characterize the vulnerability to influenza-like epidemic: The COVID-19 application in Italy.Microorganisms,2020,8(6): 911. |
29 | TOCTO E M, OLMOS L, MONTOYA J. Effect of daily periodic human movement on dengue dynamics: The case of the 2010 outbreak in Hermosillo, Mexico. Applied Mathematical Modelling, 2021: 559-567. |
30 | 龚胜生. 中国疫灾的时空分布变迁规律. 地理学报, 2003(6): 870-878. |
GONG S. Changes of the temporal-spatial distribution of epidemic disasters in 770BC-AD1911 China. Acta Geographica Sinica, 2003(6): 870-878. | |
31 | 葛鸿科, 覃敏兰, 陈燕婷. 2009—2019年梧州市丙类传染病流行特征分析. 现代预防医学, 2021, 48(10): 1761-1764. |
GE H, QIN M, CHEN Y. Analysis of the epidemiological characteristics of class C infectious diseases in Wuzhou city from 2009 to 2019. Modern Preventive Medicine, 2021, 48(10): 1761-1764. | |
32 | CHAKHTOURA NADIM-G EL, BONOMO ROBERT-A, JUMP ROBIN-L-P. Influence of aging and environment on presentation of infection in older adults. Infectious Disease Clinics of North America, 2017, 31(4): 593-608. |
33 | MOURAD A, TURNER NICHOLAS-A, BAKER ARTHUR-W, et al. Social disadvantage, politics, and severe acute respiratory syndrome coronavirus 2 trends: A county-level analysis of United States data. Clinical Infectious Diseases, 2021, 72(10): e604-e607. |
34 | JASON-H W. American politics and the spread of severe acute respiratory syndrome coronavirus 2. Clinical Infectious Diseases, 2021, 72(10): e608-e609. |
35 | TORRATS-ESPINOSA G. Using Machine learning to estimate the effect of racial segregation on COVID-19 mortality in the United States. Proceedings of the National Academy of Sciences, 2021, 118(7): e2015577118. |
36 | 余珂, 黄慧明, 朱江, 等. 特大城市公共卫生风险识别及规划应对. 规划师, 2020, 36(5): 78-81. |
YU K, HUANG H, ZHU J, et al. Public health risk identification and planning response in megacities. Planners, 2020, 36(5): 78-81. | |
37 | 邓亚丽, 张天华, 刘卫平, 等. 2014—2018年陕西省肺结核发病的时空聚集性分析. 中国防痨杂志, 2020, 42(9): 948-955. |
DENG Y, ZHANG T, LIU W, et al. Temporal and spatial clustering analysis of pulmonary tuberculosis incidence in Shaanxi Province from 2014-2018. Chinese Journal of Antituberculosis, 2020, 42(9): 948-955. | |
38 | PATRICK M-TARWATER, F-MARTIN CLYDE. Effects of population density on the spread of disease. Complexity, 2001, 27(3):taaa059 |
39 | 毕佳, 王贤敏, 胡跃译, 等. 一种基于改进Seir模型的突发公共卫生事件风险动态评估与预测方法——以欧洲十国Covid-19为例. 地球信息科学学报, 2021, 23(2): 259-273. |
BI J, WANG X, HU Y, et al. A method for dynamic risk assessment and prediction of public health emergencies based on an improved SEIR model: novel coronavirus COVID-19 in ten European countries. Journal of Geo-information Science, 2021, 23(2): 259-273. | |
40 | 韩晓丽, 张薇, 崔旭东, 等. 支持向量回归联合气象和空气污染指标在细菌性痢疾预测中的应用. 中华疾病控制杂志, 2019, 23(9): 1137-1142. |
HAN X, ZHANG W, CUI X, et al. Application of a support vector regression on prediction of bacillary dysentery combined with meteorological and air pollutants index. Chinese Journal of Disease Control & Prevention, 2019, 23(9): 1137-1142. | |
41 | 罗源, 颉丽, 陈思宇, 等. 中国PM2.5质量浓度与传染病发病率的相关性分析. 地球环境学报, 2020, 11(3): 235-244. |
LUO Y, JIE L, CHEN S, et al. The correction analysis of PM2.5 mass concentration with infectious diseases in China. Journal of Earth Environment, 2020, 11(3): 235-244. | |
42 | 王兰, 贾颖慧, 李潇天, 等. 针对传染性疾病防控的城市空间干预策略. 城市规划, 2020, 44(8): 13-20. |
WANG L, JIA Y, LI X, et al. Urban spatial intervention strategies for infectious disease prevention and control. City Planning Review, 2020, 44(8): 13-20. | |
43 | SHEYLLA N B L, RAYRLA C D A T, TANIA M R M D, et al. Individual and social vulnerabilities upon acquiring tuberculosis: A literature systematic review. International Archives of Medicine, 2014, 7(1): 1-8. |
44 | 李瑞华. "贫困-疾病"恶性循环防治机制研究. 中国卫生经济, 2020, 39(6): 27-29. |
LI R. Study on the mechanism of prevention and treatment of "poverty disease" vicious circle. Chinese Health Economics, 2020, 39(6): 27-29. | |
45 | 龚胜生, 王无为, 陈红缨,等. 湖北省手足口病流行的地理特征及其影响因子. 地理科学, 2020, 40(6): 999-1009. |
GONG S, WANG W, CHEN H, et al. Geographical characteristics and influencing factors of the prevalence of hand. Foot and Mouth Disease in Hubei Province. Scientia Geographica Sinica, 2020, 40(6): 999-1009. | |
46 | BJÖRK J, MATTISSON K, AHLBOM A. Impact of winter holiday and government responses on mortality in Europe during the first wave of the COVID-19 pandemic. European Journal of Public Health, 2021, 31(2): 272-277. |
47 | KEIL R, ALI S H. The urban political pathology of emerging infectious disease in the age of the global city. Mobile Urbanism: Cities & Policymaking in the Global Age, 2011: 123-145. |
48 | 童磊, 郑珂, 苏飞, 等. 浙江省人口健康脆弱性评估及影响因素分析. 地理科学, 2020, 40(8): 1293-1299. |
TONG L, ZHENG K, SU Fet al. Analysis of population health vulnerability assessment and influencing factors in Zhejiang province. Scientia Geographica Sinica, 2020, 40(8): 1293-1299. | |
49 | 曾通刚, 赵媛, 杨永春, 等. 中国老年群体脆弱性时空格局与性别协调发展特征——基于积极老龄化政策框架. 地理科学, 2019, 39(12): 1910-1918. |
CENG T, ZHAO Y, YANG Y, et al. Spatial-temporal pattern of the vulnerability and gender coordination development characteristics of the elderly in China: Based on the policy framework of active aging. Scientia Geographica Sinica, 2019, 39(12): 1910-1918. | |
50 | 李鹤, 张平宇. 全球变化背景下脆弱性研究进展与应用展望. 地理科学进展, 2011, 30(7): 920-929. |
LI H, ZHANG P. Research progress and prospective applications of vulnerability approach under global change. Progress in Geography, 2011, 30(7): 920-929. | |
51 | BLOOM D E, CADARETTE D. Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 2019, 10: 549. |
52 | 职璐爽, 薛惠锋. 基于熵权法的城市水资源脆弱性研究——以广东省为例. 水土保持通报, 2018, 38(5): 322-329. |
ZHI L, XUE H. A study on vulnerability of urban water resource based on entropy weight method—A case study of Guangdong province. Bulletin of Soil and Water Conservation, 2018, 38(5): 322-329. | |
53 | 邱建, 李婧, 毛素玲, 等. 重大疫情下城市脆弱性及规划应对研究框架. 城市规划, 2020, 44(9): 13-21. |
QIU J, LI J, MAO S, et al. Research framework of city vulnerability and planning response in the outbreak of major epidemics. City Planning Review, 2020, 44(9): 13-21. | |
54 | 徐建华.现代地理学中的数学方法.第三版.北京: 高等教育出版社, 2002. |
XU J. Mathematical Methods in Contemporary Geography. Third Edition. Beijing: Higher Education Press, 2002. | |
55 | 奥布力·塔力普, 汪慧玲, 阿里木江·卡斯木, 等. 基于系统聚类分析的西部地区环境污染程度评价. 冰川冻土, 2015, 37(1): 266-270. |
AO BULI·T, WANG H, LIMUJIANG·K A, et al. The environmental pollution degree in West China assessed by hierarchical cluster analysis. Journal of Glaciology and Geocryology, 2015, 37(1): 266-270. | |
56 | CLEMENTI M, DI GIANANTONIO E. Genetic susceptibility to infectious diseases. Reproductive Toxicology, 2006, 21(4): 345-349. |
57 | DIDELOT X, FRASER C, GARDY J, et al. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Molecular Biology and Evolution, 2017, 34(4): 997-1007. |
58 | STEPHENS P R, GOTTDENKER N, SCHATZ A M, et al. Characteristics of the 100 largest modern zoonotic disease outbreaks. Philosophical Transactions of the Royal Society B, 2021, 376(1837): 20200535. |
59 | MCFARLANE R A, SLEIGH A C, MCMICHAEL A J. Land-use change and emerging infectious disease on an island continent. International Journal of Environmental Research and Public Health, 2013, 10(7): 2699-2719. |
60 | WANG Y, RAO Y, WU X, et al. A method for screening climate change-sensitive infectious diseases. International Journal of Environmental Research and Public Health, 2015, 12(1): 767-783. |
61 | SCHNITTER R, VERRET M, BERRY P, et al. An assessment of climate change and health vulnerability and adaptation in Dominica. Int J Environ Res Public Health, 2018, 16(1): 70. |
62 | HOOVER K C, BARKER C M. West Nile Virus, Climate change, and circumpolar vulnerability. WIREs Climate Change, 2016, 7(2): 283-300. |
63 | WHITE L A, FORESTER J D, CRAFT M E. Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges. Journal of Animal Ecology, 2018, 87(3): 559-580. |
64 | SHARMA S, SACHDEVA P, VIRDI J S. Emerging water-borne pathogens. Applied Microbiology and Biotechnology, 2003, 61(5): 424-428. |
65 | BULGER R, JOSHUA L, ROBERT S, et al. Microbial threats to health. Emerging Infections: Microbial Threats to Health in the United States. 1992: 316. |
66 | SEEDAT F, HARGREAVES S, NELLUMS L B, et al. How effective are approaches to migrant screening for infectious diseases in Europe? A systematic review. The Lancet Infectious Diseases, 2018, 18(9): e259-e271. |
67 | 马军. 我国儿童青少年面临的主要健康问题及应对策略. 北京大学学报(医学版), 2013, 45(3): 337-342. |
MA J. Main health problems and coping strategies faced by Chinese children and adolescents. Journal of Peking University(Health Sciences), 2013, 45(3): 337-342. | |
68 | 蔡剑, 林君芬, 柴程良, 等. 浙江省手足口病与流感人群卫生状况和健康教育需求调查. 中华疾病控制杂志, 2014, 18(9): 872-875. |
CAI J, LIN J, CHAI C, et al. Investigation on health education requirement and sanitation status of hand-foot-mouth disease and influenza cases in Zhejiang Province. Chinese Journal of Disease Control & Prevention, 2014, 18(9): 872-875. | |
69 | HE S, TANG S, CAI Y, et al. A stochastic epidemic model coupled with seasonal air pollution: Analysis and data fitting. Stochastic Environmental Research and Risk Assessment, 2020, 34(12): 2245-2257. |
70 | 楼乐平, 汪永良. 学校传染病疫情发生的特点及对策. 中国公共卫生管理, 2004(6): 532-533. |
LOU Y, WANG Y. Characteristics and strategies of infectious disease in school. Chinese Journal of Public Health Management, 2004(6): 532-533. | |
71 | MAT N F C, EDINUR H A, RAZAB M K A A, et al. A single mass gathering resulted in massive transmission of COVID-19 infections in Malaysia with further international spread. Journal of Travel Medicine, 2020. |
72 | BARMANIA S, REISS M J. Health promotion perspectives on the COVID-19 pandemic: The importance of religion. Global Health Promotion, 2021, 28(1): 15-22. |
73 | GREER S L, KING E J, FONSECA E M DA, et al. The comparative politics of COVID-19: The need to understand government responses. Global Public Health, 2020, 15(9): 1413-1416. |
74 | GRIEF S N, MILLER J P. Infectious disease issues in underserved populations. Physician Assistant Clinics, 2019, 4(1): 107-125. |
75 | 吕科洋, 徐东群. 呼吸道传染病的气溶胶传播风险及防控建议. 结核与肺部疾病杂志, 2021, 2(2): 102-107. |
LU K, XU D. The risk of aerosol transmission of respiratory infectious disease and suggestions for prevention and control. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 102-107. |
[1] | 王艳, 粟娟, 刘蕾. 武陵山片区星级乡村民宿空间分异及影响因素[J]. 世界地理研究, 2023, 32(9): 170-180. |
[2] | 孟龙飞, 潘志新, 朱万里. 美国国家公园环境教育体系特征及启示[J]. 世界地理研究, 2023, 32(8): 51-62. |
[3] | 董俊鸷, 孟怡伟, 丁志伟. 中国县域创新产出的空间分异及其影响因素[J]. 世界地理研究, 2023, 32(8): 88-102. |
[4] | 邢赟, 魏国恩, 张振克, 刘柄麟. 南非沿海地区可持续发展评价研究[J]. 世界地理研究, 2023, 32(6): 77-86. |
[5] | 楚晗, 谢涤湘, 常江. 国外环境绅士化研究进展与启示[J]. 世界地理研究, 2023, 32(4): 170-180. |
[6] | 齐慧, 陈瑛, 周鸿. 中国地理学界对美国研究的热点主题与脉络演进[J]. 世界地理研究, 2023, 32(4): 28-40. |
[7] | 施青雨, 章锦河, 孙枫, 王亚如. 黄山风景区旅游废弃物生态足迹历时性分析[J]. 世界地理研究, 2023, 32(1): 150-161. |
[8] | 王孟林, 陈瑛, 张婷婷. 中国对美国州层面直接投资时空演变与驱动因素探究[J]. 世界地理研究, 2023, 32(1): 54-66. |
[9] | 马林靖, 李培速, 伍亚红. 城镇化发展如何影响非正规就业?[J]. 世界地理研究, 2022, 31(6): 1273-1284. |
[10] | 黄依慧, 陈宏胜, 李志刚. 不均衡的跨国人口流动:对美墨移民历程与政策的思考[J]. 世界地理研究, 2022, 31(6): 1204-1214. |
[11] | 康韵婕, 杨建平, 哈琳, 肖杰. 冰冻圈旅游经济区发展水平及影响因素分析[J]. 世界地理研究, 2022, 31(5): 1083-1095. |
[12] | 贾庆军. 20世纪50年代前美国对南海的地缘认知演变[J]. 世界地理研究, 2022, 31(5): 895-904. |
[13] | 王列辉, 张圣, 陈锐. 南海周边航运网络脆弱性及对中国集装箱运输的影响[J]. 世界地理研究, 2022, 31(4): 700-712. |
[14] | 曹宛鹏. 美国在南海及周边地区的军事权力增长及军事存在演变[J]. 世界地理研究, 2022, 31(4): 726-736. |
[15] | 刘欢, 孟德友. 高铁背景下省会城市交通优势度空间分异及影响因素[J]. 世界地理研究, 2022, 31(1): 107-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||