世界地理研究 ›› 2023, Vol. 32 ›› Issue (3): 124-135.DOI: 10.3969/j.issn.1004-9479.2023.03.2020926
收稿日期:
2020-12-31
修回日期:
2021-04-26
出版日期:
2023-03-15
发布日期:
2023-04-04
通讯作者:
胡美娟
作者简介:
李在军(1989—),男,副教授,博士研究生,研究方向为区域经济发展,E-mail:958163533@qq.com。
基金资助:
Received:
2020-12-31
Revised:
2021-04-26
Online:
2023-03-15
Published:
2023-04-04
Contact:
Meijuan HU
摘要:
生态福利绩效融合经济、社会、生态三大系统,是衡量城市可持续发展能力的有效工具,反映了区域代际公平和代内公平。对2000—2017年江苏省13座城市生态福利绩效的时空演化特征、影响因素及形成机制研究发现:(1)江苏省城市生态福利绩效年均值较低,为0.455,整体呈现先下降后上升的“U形”变动特征,先后经历快速下降期、缓慢波动期及有序增长期;(2)从空间上看,城市之间生态福利绩效差异显著,经济发展水平与生态福利绩效具有明显的空间错配,经济发达的苏南地市生态福利绩效远低于经济欠发达的苏中、苏北地市;(3)动态面板回归揭示城镇化、经济增长与生态福利绩效均呈现显著的“U形”曲线关系,消费水平和产业结构高级化起到显著的正向驱动作用,外商直接投资和能源强度起到显著的抑制作用,人口密度对生态福利绩效的影响程度较弱且不显著。
李在军, 胡美娟. 江苏省生态福利绩效时空演化及影响机制研究[J]. 世界地理研究, 2023, 32(3): 124-135.
Zaijun LI, Meijuan HU. Spatial-temporal evolution and formation mechanism of ecological well-being performance in Jiangsu Province[J]. World Regional Studies, 2023, 32(3): 124-135.
一级指标 | 二级指标 | 三级指标 |
---|---|---|
投入 | 土地资源消耗 | 人均建成区面积(X1) |
水资源消耗 | 人均用水量(X2) | |
能源资源消耗 | 人均能源消费量(X3) | |
非期望产出 | 废水排放量 | 人均工业废水排放量(Y1)、人均生活污水排放量(Y2) |
工业废气排放量 | 人均工业废气排放量(Y3) | |
固体废弃物产生量 | 人均固体废弃物产生量(Y4) | |
期望产出 | 经济水平 | 人均可支配收入(Z1) |
教育水平 | 人均受教育年限(Z2) | |
医疗服务水平 | 万人医生数(Z3)、万人医院数(Z4)、万人床位数(Z5) |
表1 生态福利绩效评价指标体系
Tab.1 Indicator system of ecological well-being performance evaluation
一级指标 | 二级指标 | 三级指标 |
---|---|---|
投入 | 土地资源消耗 | 人均建成区面积(X1) |
水资源消耗 | 人均用水量(X2) | |
能源资源消耗 | 人均能源消费量(X3) | |
非期望产出 | 废水排放量 | 人均工业废水排放量(Y1)、人均生活污水排放量(Y2) |
工业废气排放量 | 人均工业废气排放量(Y3) | |
固体废弃物产生量 | 人均固体废弃物产生量(Y4) | |
期望产出 | 经济水平 | 人均可支配收入(Z1) |
教育水平 | 人均受教育年限(Z2) | |
医疗服务水平 | 万人医生数(Z3)、万人医院数(Z4)、万人床位数(Z5) |
自变量 | 符号 | 计算方法 | 单位 |
---|---|---|---|
城市化 | URB | 城镇人口/常住人口 | % |
经济增长 | PGDP | 地区生产总值/常住人口 | 万元/人 |
消费水平 | CON | 社会消费品零售额/常住人口 | 元/人 |
产业结构 | STR | 第三产业增加值/第二产业增加值 | % |
外商投资 | FDI | 外商直接投资额/社会固定投资总额 | % |
能源强度 | ENR | 能源消费量/GDP | 吨标准煤/万元 |
人口密度 | PD | 常住人口/城市面积 | 人/km2 |
表2 生态福利绩效影响变量
Tab.2 Influencing factors of urban ecological well-being performance
自变量 | 符号 | 计算方法 | 单位 |
---|---|---|---|
城市化 | URB | 城镇人口/常住人口 | % |
经济增长 | PGDP | 地区生产总值/常住人口 | 万元/人 |
消费水平 | CON | 社会消费品零售额/常住人口 | 元/人 |
产业结构 | STR | 第三产业增加值/第二产业增加值 | % |
外商投资 | FDI | 外商直接投资额/社会固定投资总额 | % |
能源强度 | ENR | 能源消费量/GDP | 吨标准煤/万元 |
人口密度 | PD | 常住人口/城市面积 | 人/km2 |
自变量 | 基准回归 | 固定效应 | 动态面板回归 | ||||||
---|---|---|---|---|---|---|---|---|---|
模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 | |
EWP_2 | 0.320*** (12.28) | 0.249*** (5.85) | 0.576*** (23.34) | 0.400*** (35.72) | 0.510*** (20.21) | 0.456*** (22.13) | 0.488*** (22.31) | 0.421*** (13.69) | 0.455*** (31.37) |
lnURB | 0.213 (1.04) | 0.234 (1.39) | -0.102*** (-2.96) | -0.232*** (-3.58) | -0.239*** (-4.49) | 0.078 (1.21) | 0.108 (0.79) | 0.113 (0.76) | 0.192* (1.85) |
lnURB2 | 0.318** (2.69) | 0.056 (0.31) | 0.563 (0.46) | 0.143* (1.72) | 0.221*** (3.54) | 0.219*** (4.42) | 0.216*** (4.42) | 0.216*** (3.98) | 0.321*** (5.24) |
lnPGDP | -0.130* (-1.79) | -0.539*** (-3.21) | 0.141*** (5.23) | -0.245*** (-6.79) | -0.232*** (-7.32) | -0.142*** (-3.87) | -0.145*** (-4.42) | -0.156*** (-4.74) | |
lnCON | 0.321*** (5.12) | 0.531*** (4.56) | 0.631*** (20.45) | 0.553*** (18.74) | 0.442*** (18.34) | 0.432*** (17.25) | 0.419*** (16.13) | ||
lnSTR | 0.321*** (5.23) | 0.212*** (3.19) | 0.212*** (5.42) | 0.325*** (5.23) | 0.289*** (4.04) | 0.301*** (5.10) | |||
lnFDI | -0.234** (-2.56) | -0.032 (-0.56) | -0.432*** (-3.43) | -0.034*** (-3.21) | -0.119*** (-4.13) | ||||
lnENR | -0.031 (-0.89) | 0.021 (0.12) | -0.168*** (-4.73) | -0.124*** (-4.43) | |||||
lnPD | 0.132** (2.31) | -0.120 (-0.11) | 0.063** (2.59) | ||||||
_cons | -0.134** (-2.35) | 0.126 (0.44) | 0.152*** (5.32) | 0.432*** (10.11) | 0.126*** (4.55) | -0.232*** (-4.63) | -0.128*** (-3.43) | -0.032 (-1.43) | -0.279*** (-3.56) |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.123 | 0.119 | 0.111 | 0.105 | 0.116 | 0.107 | 0.105 | 0.126 | 0.127 |
Sargan | 0.121 | 0.140 | 0.122 | 0.135 | 0.113 | 0.145 | 0.138 | 0.115 | 0.129 |
表3 城市化为核心解释变量的面板回归结果
Tab.3 Results of panel regression taking urbanization as the core variable
自变量 | 基准回归 | 固定效应 | 动态面板回归 | ||||||
---|---|---|---|---|---|---|---|---|---|
模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 | |
EWP_2 | 0.320*** (12.28) | 0.249*** (5.85) | 0.576*** (23.34) | 0.400*** (35.72) | 0.510*** (20.21) | 0.456*** (22.13) | 0.488*** (22.31) | 0.421*** (13.69) | 0.455*** (31.37) |
lnURB | 0.213 (1.04) | 0.234 (1.39) | -0.102*** (-2.96) | -0.232*** (-3.58) | -0.239*** (-4.49) | 0.078 (1.21) | 0.108 (0.79) | 0.113 (0.76) | 0.192* (1.85) |
lnURB2 | 0.318** (2.69) | 0.056 (0.31) | 0.563 (0.46) | 0.143* (1.72) | 0.221*** (3.54) | 0.219*** (4.42) | 0.216*** (4.42) | 0.216*** (3.98) | 0.321*** (5.24) |
lnPGDP | -0.130* (-1.79) | -0.539*** (-3.21) | 0.141*** (5.23) | -0.245*** (-6.79) | -0.232*** (-7.32) | -0.142*** (-3.87) | -0.145*** (-4.42) | -0.156*** (-4.74) | |
lnCON | 0.321*** (5.12) | 0.531*** (4.56) | 0.631*** (20.45) | 0.553*** (18.74) | 0.442*** (18.34) | 0.432*** (17.25) | 0.419*** (16.13) | ||
lnSTR | 0.321*** (5.23) | 0.212*** (3.19) | 0.212*** (5.42) | 0.325*** (5.23) | 0.289*** (4.04) | 0.301*** (5.10) | |||
lnFDI | -0.234** (-2.56) | -0.032 (-0.56) | -0.432*** (-3.43) | -0.034*** (-3.21) | -0.119*** (-4.13) | ||||
lnENR | -0.031 (-0.89) | 0.021 (0.12) | -0.168*** (-4.73) | -0.124*** (-4.43) | |||||
lnPD | 0.132** (2.31) | -0.120 (-0.11) | 0.063** (2.59) | ||||||
_cons | -0.134** (-2.35) | 0.126 (0.44) | 0.152*** (5.32) | 0.432*** (10.11) | 0.126*** (4.55) | -0.232*** (-4.63) | -0.128*** (-3.43) | -0.032 (-1.43) | -0.279*** (-3.56) |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.123 | 0.119 | 0.111 | 0.105 | 0.116 | 0.107 | 0.105 | 0.126 | 0.127 |
Sargan | 0.121 | 0.140 | 0.122 | 0.135 | 0.113 | 0.145 | 0.138 | 0.115 | 0.129 |
自变量 | 基准回归 | 固定效应 | 动态面板回归 | ||||||
---|---|---|---|---|---|---|---|---|---|
模型10 | 模型11 | 模型12 | 模型13 | 模型14 | 模型15 | 模型16 | 模型17 | 模型18 | |
EWP_2 | 0.532*** (12.89) | 0.239*** (6.93) | 0.605*** (20.34) | 0.552*** (13.55) | 0.636*** (30.62) | 0.521*** (31.98) | 0.420*** (32.57) | 0.467*** (15.64) | 0.442*** (21.34) |
lnPGDP | -0.321*** (-3.13) | 0.346*** (3.05) | -0.189*** (-4.89) | -0.132*** (-5.52) | -0.292*** (-5.46) | 0.238*** (3.06) | 0.257*** (3.33) | 0.178* (1.65) | 0.245** (2.51) |
lnPGDP2 | 0.201 (1.26) | -0.143 (-0.67) | 0.156*** (4.27) | 0.296*** (7.45) | -0.101 (-0.79) | 0.371*** (3.56) | 0.307*** (4.46) | 0.312*** (4.78) | 0.337*** (3.57) |
lnURB | -0.521** (-2.34) | -0.471** (-2.36) | -0.218*** (-8.48) | -0.204*** (-9.43) | -0.269*** (-9.78) | -0.236*** (-6.39) | -0.170*** (-5.98) | -0.145*** (-5.12) | |
lnCON | 0.242*** (6.72) | 0.546*** (3.67) | 0.427*** (13.43) | 0.521*** (15.42) | 0.562*** (20.22) | 0.349*** (9.76) | 0.378*** (8.32) | ||
lnSTR | 0.134*** (4.35) | 0.340*** (5.35) | 0.389*** (9.35) | 0.335*** (9.11) | 0.310*** (8.34) | 0.368*** (9.14) | |||
lnFDI | -0.002* (-1.95) | -0.043 (-1.23) | -0.054*** (-3.03) | -0.069*** (-3.44) | -0.153*** (-4.92) | ||||
lnENR | -0.134 (-1.45) | -0.068 (-0.25) | -0.153*** (-3.45) | -0.103*** (-2.88) | |||||
lnPD | 0.045 (1.02) | 0.103 (0.49) | 0.047 (1.23) | ||||||
_cons | -0.321* (-1.88) | -0.144 (-0.94) | 0.261*** (10.43) | 0.203*** (9.35) | 0.138 (1.42) | -0.133*** (-5.71) | -0.215*** (-4.53) | -0.213** (-2.63) | -0.245*** (-3.80) |
AR(1) | 0.000 | 0.003 | 0.006 | 0.005 | 0.001 | 0.005 | 0.003 | 0.001 | 0.001 |
AR(2) | 0.134 | 0.142 | 0.452 | 0.378 | 0.623 | 0.652 | 0.323 | 0.147 | 0.131 |
Sargan | 0.110 | 0.121 | 0.131 | 0.122 | 0.133 | 0.103 | 0.115 | 0.122 | 0.146 |
表4 经济发展为核心变量的面板回归结果
Tab.4 Results of panel regression taking economic development as the core variable
自变量 | 基准回归 | 固定效应 | 动态面板回归 | ||||||
---|---|---|---|---|---|---|---|---|---|
模型10 | 模型11 | 模型12 | 模型13 | 模型14 | 模型15 | 模型16 | 模型17 | 模型18 | |
EWP_2 | 0.532*** (12.89) | 0.239*** (6.93) | 0.605*** (20.34) | 0.552*** (13.55) | 0.636*** (30.62) | 0.521*** (31.98) | 0.420*** (32.57) | 0.467*** (15.64) | 0.442*** (21.34) |
lnPGDP | -0.321*** (-3.13) | 0.346*** (3.05) | -0.189*** (-4.89) | -0.132*** (-5.52) | -0.292*** (-5.46) | 0.238*** (3.06) | 0.257*** (3.33) | 0.178* (1.65) | 0.245** (2.51) |
lnPGDP2 | 0.201 (1.26) | -0.143 (-0.67) | 0.156*** (4.27) | 0.296*** (7.45) | -0.101 (-0.79) | 0.371*** (3.56) | 0.307*** (4.46) | 0.312*** (4.78) | 0.337*** (3.57) |
lnURB | -0.521** (-2.34) | -0.471** (-2.36) | -0.218*** (-8.48) | -0.204*** (-9.43) | -0.269*** (-9.78) | -0.236*** (-6.39) | -0.170*** (-5.98) | -0.145*** (-5.12) | |
lnCON | 0.242*** (6.72) | 0.546*** (3.67) | 0.427*** (13.43) | 0.521*** (15.42) | 0.562*** (20.22) | 0.349*** (9.76) | 0.378*** (8.32) | ||
lnSTR | 0.134*** (4.35) | 0.340*** (5.35) | 0.389*** (9.35) | 0.335*** (9.11) | 0.310*** (8.34) | 0.368*** (9.14) | |||
lnFDI | -0.002* (-1.95) | -0.043 (-1.23) | -0.054*** (-3.03) | -0.069*** (-3.44) | -0.153*** (-4.92) | ||||
lnENR | -0.134 (-1.45) | -0.068 (-0.25) | -0.153*** (-3.45) | -0.103*** (-2.88) | |||||
lnPD | 0.045 (1.02) | 0.103 (0.49) | 0.047 (1.23) | ||||||
_cons | -0.321* (-1.88) | -0.144 (-0.94) | 0.261*** (10.43) | 0.203*** (9.35) | 0.138 (1.42) | -0.133*** (-5.71) | -0.215*** (-4.53) | -0.213** (-2.63) | -0.245*** (-3.80) |
AR(1) | 0.000 | 0.003 | 0.006 | 0.005 | 0.001 | 0.005 | 0.003 | 0.001 | 0.001 |
AR(2) | 0.134 | 0.142 | 0.452 | 0.378 | 0.623 | 0.652 | 0.323 | 0.147 | 0.131 |
Sargan | 0.110 | 0.121 | 0.131 | 0.122 | 0.133 | 0.103 | 0.115 | 0.122 | 0.146 |
1 | 方时姣, 肖权. 中国区域生态福利绩效水平及其空间效应研究. 中国人口·资源与环境, 2019, 29(3): 1-10. |
FANG S. XIAO Q. Research on regional ecological well-being performance and spatial effect in China. China Population, Resources and Environment, 2019, 29(3): 1-10. | |
2 | DALY H. Sustainable development: From concept and theory to operational principles. Population and Development Review, 1990, 16: 25-43. |
3 | COMMON M. Measuring national economic performance without using prices. Ecological Economics, 2007, 64(1): 92-102. |
4 | MICHALOS A. Encyclopedia of Quality of Life and Well-Being Research. Heidelberg: Springer, 2014. |
5 | KNIGHT K, ROSA E. The environmental efficiency of well-being: A cross-national analysis. Social Science Research, 2011, 40(3): 931-949. |
6 | 诸大建, 张帅. 生态福利绩效与深化可持续发展的研究. 同济大学学报(社会科学版), 2014, 25(5): 106-115. |
ZHU D, ZHANG S. Ecological wellbeing performance and further research on sustainable development. Journal of Tongji University (Social Science Section), 2014, 25(5): 106-115. | |
7 | 冯吉芳, 袁健红. 中国区域生态福利绩效及其影响因素. 中国科技论坛, 2016, 32(3): 100-105. |
FENG J, YUAN J. On Chinese regional ecological well-being performance and its influence factors. Forum on Science and Technology in China, 2016, 32(3): 100-105. | |
8 | FENG Y, ZHONG S, LI Q, et al. Ecological well-being performance growth in China (1994-2014): From perspectives of industrial structure green adjustment and green total factor productivity.Journal of Cleaner Production,2019,236: 117556. |
9 | 刘娜, 程钰, 韩政.中国生态福利绩效时空演变与影响因素. 济南大学学报(自然科学版), 2021,35(5): 1-11. |
LIU N, CHENG Y, HAN Z. Spatio-temporal evolution and influencing factors of ecological well-being performance in China. Journal of University of Jinan(Science and Technology), 2021(5): 1-11. | |
10 | 金凤君. 论人类可持续发展的空间福利. 地理研究, 2014, 33(3): 582-588. |
JIN F. Sustainable spatial welfare: The cornerstone for human beings' development. Geographic Research, 2014, 33(3): 582-588. | |
11 | 诸大建, 张帅. 生态福利绩效及其与经济增长的关系研究. 中国人口·资源与环境, 2014, 24(9): 59-67. |
ZHU D, ZHANG S. Research on ecological wellbeing performance and its relationship with economic growth. China Population, Resources and Environment, 2014, 24(9): 59-67. | |
12 | 臧漫丹, 诸大建, 刘国平. 生态福利绩效: 概念、内涵及G20实证. 中国人口·资源与环境, 2013, 23(5): 118-124. |
ZANG M, ZHU D, LIU G. Ecological well-being performance: Concept, connotation and empirical of G20. China Population, Resources and Environment, 2013, 23(5): 118-124. | |
13 | 杜慧彬, 黄立军, 张辰, 等. 中国省级生态福利绩效区域差异性分解和收敛性研究. 生态经济, 2019, 35(3): 187-193. |
DU H, HUANG L, ZHANG C, et al. Research on the regional differences decomposition and convergence mechanism of ecological well-being performance. Ecological Economy, 2019, 35(3): 187-193. | |
14 | 龙亮军,王霞,郭兵. 基于改进DEA模型的城市生态福利绩效评价研究——以我国35个大中城市为例. 自然资源学报, 2017, 32(4): 595-605. |
LONG L, WANG X, GUO B. Evaluation of urban ecological well-being performance based on Revised DEA Model--A case study of 35 major cities in China. Journal of Natural Resources, 2017, 32(4): 595-605. | |
15 | 诸大建, 张帅. 基于生态足迹的中国福利水平及其影响因素研究. 城市与环境研究, 2014, 1(1): 18-33. |
ZHU D, ZHANG S. The research on wellbeing level of China and its impact factors from the perspective of ecological footprint. Urban and Environmental Studies, 2014, 1(1): 18-33. | |
16 | 刘国平.中国能源福利绩效及其因素分解研究: 基于G20数据.经济问题探索,2017,38(1):24-30. |
LIU G.Energy welfare performance and factor decomposition in China: Based on G20 data.Inquiry into Economic Issues,2017,38(1): 24-30. | |
17 | ENGELBRECHT H. Nature capital, subjective well-being, and the new welfare economic of sustainability: Some evidence from cross-country regressions. Ecological Economics, 2009, 69(2): 380-388. |
18 | LONG R, ZHANG Q, CHEN H, et al. Measurement of the energy intensity of human well-being and spatial econometric analysis of its influencing factors. International Journal of Environmental Research and Public Health, 2020, 17(1): 357. |
19 | 龙亮军. 综合福利视角下中国生态文明建设绩效评价及国际比较. 自然资源学报, 2019, 34(6): 1259-1272. |
LONG L. Evaluation of ecological civilization construction performance and its international comparison from the perspective of overall well-being. Journal of Natural Resources, 2019, 34(6): 1259-1272. | |
20 | HU M, SARWAR S, LI Z. Spatio-temporal differentiation mode and threshold effect of Yangtze River Delta urban ecological well-being performance based on network DEA. Sustainability, 2021, 13(8): 4550. |
21 | TONE K. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 2001, 130(3): 498-509. |
22 | TONE K. A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 2002, 143(1): 32-41. |
23 | 李成宇, 张士强, 张伟, 等. 中国省际生态福利绩效测算及影响因素研究. 地理科学, 2019, 39(12): 1875-1883. |
LI C, ZHANG S, ZHANG W, et al. Measurement and influencing factors of inter-provincial ecological well-being performance in China. Scientia Geographica Sinica, 2019, 39(12): 1875-1883. | |
24 | 徐维祥, 徐志雄, 刘程军. 黄河流域地级城市土地集约利用效率与生态福利绩效的耦合性分析. 自然资源学报, 2021, 36(1): 114-130. |
XU W, XU Z, LIU C. Coupling analysis of land intensive use efficiency and ecological well-being performance of cities in the Yellow River Basin. Journal of Natural Resources, 2021, 36(1): 114-130. | |
25 | BALESTRA C, BOARINI R, TOSETTO E. What matters most to people? Evidence from the OECD better life index users' responses. Social Indicators Research, 2018, 136(3): 907-930. |
26 | 张云飞. 城市群内产业集聚与经济增长关系的实证研究——基于面板数据的分析. 经济地理, 2014, 34(1): 108-113. |
ZHANG Y. Empirical studies on the relationship between industrial agglomeration and economic growth within the urban agglomeration--Based on panel data analysis. Economic Geography, 2014, 34(1): 108-113. | |
27 | 刘耀彬, 袁华锡, 王喆. 文化产业集聚对绿色经济效率的影响——基于动态面板模型的实证分析. 资源科学, 2017, 39(4): 747-755. |
LIU Y, YUAN H, WANG Z. Dynamic panel data modeling of the effects of cultural industry clusters on green economic efficiency. Resources Science, 2017, 39(4): 747-755. | |
28 | WANG R, FENG Y. Research on China's ecological welfare performance evaluation and improvement path from the perspective of high-quality development. Mathematical Problems in Engineering, 2020: 1-14. |
29 | BIAN J, REN H, LIU P. Evaluation of urban ecological well-being performance in China: A case study of 30 provincial capital cities. Journal of Cleaner Production, 2020, 254(1): 120109. |
[1] | 孙启翔, 李百岁, 田桐羽, 许晔晖, 赵洪朴. 内蒙古的城市活力时空格局及影响因素研究[J]. 世界地理研究, 2023, 32(3): 101-111. |
[2] | 银松, 李瑞, 殷红梅. 旅游发展背景下民族村寨居民地方性感知测度及影响因素研究[J]. 世界地理研究, 2023, 32(3): 144-156. |
[3] | 徐婧雅, 宋周莺. 中国手机出口的时空格局演变及其影响因素[J]. 世界地理研究, 2023, 32(3): 17-27. |
[4] | 周李, 张晓瑶, 徐琳琳, 虞虎, 吴殿廷. 中蒙俄经济走廊旅游吸引物分布特征及形成因素[J]. 世界地理研究, 2023, 32(3): 28-40. |
[5] | 初楠臣, 张平宇, 吴相利, 徐爽, 史晓楠. 俄罗斯新冠肺炎疫情的扩散:过程、格局与影响因素研究[J]. 世界地理研究, 2023, 32(3): 41-51. |
[6] | 李连刚, 胡晓辉. 新冠肺炎疫情下中国区域经济韧性时空格局与影响因素分析[J]. 世界地理研究, 2023, 32(3): 64-75. |
[7] | 路昌, 徐雪源, 周美璇. 中国三大城市群收缩城市“三生”功能耦合协调度分析[J]. 世界地理研究, 2023, 32(3): 76-88. |
[8] | 唐波, 陈得冠, 罗皓, 谢伟星, 林琳. 高质量发展背景下佛山市高新技术产业空间演变及影响因素[J]. 世界地理研究, 2023, 32(2): 136-145. |
[9] | 谢潇, 盈斌, 杜芳娟, 宋潇玉, 吴函彦. 中国妇幼健康水平的区域差异和影响因素[J]. 世界地理研究, 2023, 32(2): 82-92. |
[10] | 韦汝虹, 金李, 方达. 商品住宅价格空间溢出效应测度及其影响 因素分析[J]. 世界地理研究, 2023, 32(1): 117-129. |
[11] | 闫姗姗, 刘承良. 中国对外技术转移网络的空间演化及其影响因素[J]. 世界地理研究, 2023, 32(1): 19-30. |
[12] | 谢明慧, 黄耿志, 张旭. 基于文化演出消费视角的中国城市网络空间结构与影响因素研究[J]. 世界地理研究, 2022, 31(6): 1332-1344. |
[13] | 杨人懿, 钟昌标, 杨子生, 刘凤莲, 彭海英. 西南喀斯特石漠化深度贫困县的贫困影响 因素分析[J]. 世界地理研究, 2022, 31(6): 1298-1309. |
[14] | 张筱娟, 汤琪凤, 廖紫薇. 江苏省研发企业空间格局演化及其影响因素分析[J]. 世界地理研究, 2022, 31(5): 1034-1045. |
[15] | 孟克祖勒, 阎建忠, 王三. 重庆市主城区休闲设施空间格局变化及其解释[J]. 世界地理研究, 2022, 31(5): 1057-1069. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||