世界地理研究 ›› 2025, Vol. 34 ›› Issue (8): 139-156.DOI: 10.3969/j.issn.1004-9479.2025.08.20230785
• 城市与产业 • 上一篇
收稿日期:
2023-11-16
修回日期:
2024-04-30
出版日期:
2025-08-15
发布日期:
2025-09-01
通讯作者:
程钰
作者简介:
王丹(1999—),女,硕士,研究方向为区域可持续发展,E-mail:369861953@qq.com。
基金资助:
Dan WANG(), Yu CHENG(
), Hongxiao ZHAO
Received:
2023-11-16
Revised:
2024-04-30
Online:
2025-08-15
Published:
2025-09-01
Contact:
Yu CHENG
摘要:
制造业作为现代产业体系的核心,已成为拉动国民经济增长的重要动力。基于2005—2019年中国30个省(市)面板数据,运用探索性时空数据分析、空间杜宾模型等方法,探究中国省域制造业碳排放的时空演化特征及影响因素,结果表明:①2005—2019年,中国制造业碳排放量呈现先上升后下降的趋势,制造业碳排放量空间集聚与分异特征明显,呈现由东南向西北逐渐递减的分布格局。②在制造业碳排放的空间结构与依赖方向上,东北地区制造业碳排放空间结构的动态性较强,但空间依赖方向并不稳定;西部地区制造业碳排放的空间结构和空间依赖方向都比较稳定。制造业碳排放时空跃迁具有一定的空间依赖性和转移惰性,其时空网络格局以正向关联为主,大部分省份间存在合作共赢关系。③能源结构、城镇化率、制造业总产值、经济规模对制造业碳排放量产生显著的正向影响,而外商直接投资占GDP的比重对制造业碳排放量产生显著负向影响。各影响因素对不同跃迁类型的省份、不同行业的制造业碳排放量存在一定异质性,相较于低碳行业和III型省份,高碳行业和I、II型省份的制造业碳排放量影响更为显著。研究从发挥区域优势,加强协同合作等方面为制造业转型升级和碳减排提供对策建议。
王丹, 程钰, 赵鸿潇. 中国省域制造业碳排放时空交互特征及影响因素研究[J]. 世界地理研究, 2025, 34(8): 139-156.
Dan WANG, Yu CHENG, Hongxiao ZHAO. Spatial and temporal interaction characteristics and influencing factors of carbon emissions from manufacturing industries in China[J]. World Regional Studies, 2025, 34(8): 139-156.
类型 | 状态 |
---|---|
类型Ⅰ | 本省和相邻省均无跃迁(HH→HH LH→LH LL→LL HL→HL) |
类型Ⅱ | 仅本省发生跃迁(LH→HH HH→LH HL→LL LL→HL) |
类型Ⅲ | 仅相邻省发生跃迁(HL→HH LL→LH LH→LL HH→HL) |
类型Ⅳ | 本省和相邻省都有跃迁(LL→HH HL→LH HH→LL LH→HL) |
表1 跃迁类型
Tab.1 Transition types
类型 | 状态 |
---|---|
类型Ⅰ | 本省和相邻省均无跃迁(HH→HH LH→LH LL→LL HL→HL) |
类型Ⅱ | 仅本省发生跃迁(LH→HH HH→LH HL→LL LL→HL) |
类型Ⅲ | 仅相邻省发生跃迁(HL→HH LL→LH LH→LL HH→HL) |
类型Ⅳ | 本省和相邻省都有跃迁(LL→HH HL→LH HH→LL LH→HL) |
变量 | 样本量 | 平均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|
CE | 450 | 93.124 | 75.163 | 3.708 | 478.672 |
EST | 450 | 0.680 | 0.294 | 0.018 | 1.758 |
MS | 450 | 2 500 000 | 3 170 000 | 1 371.480 | 18 119 615 |
UR | 450 | 0.544 | 0.141 | 0.269 | 0.938 |
FDI | 450 | 0.024 | 0.021 | 0 | 0.121 |
MP | 450 | 23 892.898 | 29 452.832 | 239.840 | 165 000 |
ES | 450 | 40 423.892 | 26 187.983 | 5 218 | 161 776 |
表2 变量的描述性统计
Tab.2 Descriptive statistics of variables
变量 | 样本量 | 平均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|
CE | 450 | 93.124 | 75.163 | 3.708 | 478.672 |
EST | 450 | 0.680 | 0.294 | 0.018 | 1.758 |
MS | 450 | 2 500 000 | 3 170 000 | 1 371.480 | 18 119 615 |
UR | 450 | 0.544 | 0.141 | 0.269 | 0.938 |
FDI | 450 | 0.024 | 0.021 | 0 | 0.121 |
MP | 450 | 23 892.898 | 29 452.832 | 239.840 | 165 000 |
ES | 450 | 40 423.892 | 26 187.983 | 5 218 | 161 776 |
时段 | t/t+1 | HH | LH | LL | HL | SF | SC |
---|---|---|---|---|---|---|---|
2005—2012年 | HH | I(鲁晋苏冀豫辽) | II(浙) | IV | III | 0.166 7 | 0.833 3 |
LH | II | I(沪蒙吉皖赣琼陕) | III(闽) | IV | |||
LL | IV | III(云贵渝) | I(京津宁桂新甘青黑) | II | |||
HL | III | IV | II | I(川粤鄂湘) | |||
2012—2019年 | HH | I(鲁晋苏冀豫辽) | II | IV | III | 0.233 3 | 0.766 7 |
LH | II(蒙) | I(沪吉皖浙琼贵) | III(云赣渝陕) | IV | |||
LL | IV | III | I(京津宁新甘闽青黑) | II(桂) | |||
HL | III | IV | II(湘) | I(鄂川粤) | |||
2005—2019年 | HH | I(鲁晋苏冀豫辽) | II(浙) | IV | III | 0.266 7 | 0.733 3 |
LH | II(蒙) | I(沪吉皖琼) | III(赣闽陕) | IV | |||
LL | IV | III(贵) | I(云京津宁新甘渝青黑) | II(桂) | |||
HL | III | IV | II(湘) | I(川粤鄂) |
表3 时空跃迁矩阵
Tab.3 Space-time transition matrix
时段 | t/t+1 | HH | LH | LL | HL | SF | SC |
---|---|---|---|---|---|---|---|
2005—2012年 | HH | I(鲁晋苏冀豫辽) | II(浙) | IV | III | 0.166 7 | 0.833 3 |
LH | II | I(沪蒙吉皖赣琼陕) | III(闽) | IV | |||
LL | IV | III(云贵渝) | I(京津宁桂新甘青黑) | II | |||
HL | III | IV | II | I(川粤鄂湘) | |||
2012—2019年 | HH | I(鲁晋苏冀豫辽) | II | IV | III | 0.233 3 | 0.766 7 |
LH | II(蒙) | I(沪吉皖浙琼贵) | III(云赣渝陕) | IV | |||
LL | IV | III | I(京津宁新甘闽青黑) | II(桂) | |||
HL | III | IV | II(湘) | I(鄂川粤) | |||
2005—2019年 | HH | I(鲁晋苏冀豫辽) | II(浙) | IV | III | 0.266 7 | 0.733 3 |
LH | II(蒙) | I(沪吉皖琼) | III(赣闽陕) | IV | |||
LL | IV | III(贵) | I(云京津宁新甘渝青黑) | II(桂) | |||
HL | III | IV | II(湘) | I(川粤鄂) |
模型检验 | 统计值 |
---|---|
LM-lag | 5.832** |
Robust LM-lag | 4.628*** |
LM-Error | 3.494* |
Robust LM-Error | 2.290 |
LR-lag | 37.63*** |
LR-Error | 38.39*** |
表4 模型选择 (Model selection)
Tab.4
模型检验 | 统计值 |
---|---|
LM-lag | 5.832** |
Robust LM-lag | 4.628*** |
LM-Error | 3.494* |
Robust LM-Error | 2.290 |
LR-lag | 37.63*** |
LR-Error | 38.39*** |
变量 | (1) | (2) | (3) | (4) |
---|---|---|---|---|
最小二乘法 | 空间固定 | 时间空间双固定 | 固定效应的空间杜宾 | |
lnEST | 0.650***(15.16) | 0.607***(14.27) | 0.540***(12.35) | 0.568***(10.51) |
lnMS | -0.004(-0.12) | 0.016(0.88) | 0.001(0.05) | 0.004(0.23) |
lnUR | -0.075(-0.41) | 0.284(1.45) | 0.563**(2.50) | 0.750***(3.04) |
lnFDI | -0.116***(-4.82) | -0.057***(-3.14) | -0.076***(-4.22) | -0.061***(-3.30) |
lnMP | 0.706***(17.40) | 0.289***(7.62) | 0.172***(3.85) | 0.127***(2.79) |
lnES | -0.379***(-4.57) | 0.074(1.07) | 0.431***(3.12) | 0.338**(2.47) |
W·lnEST | -0.036(-0.29) | |||
W·lnMS | 0.017(0.50) | |||
W·lnUR | -0.921**(-2.13) | |||
W·lnFDI | 0.052(1.05) | |||
W·lnMP | 0.216**(2.15) | |||
W·lnES | -0.350*(-1.80) | |||
rho | 0.083*(1.11) | |||
sigma2e | 0.027***(14.48) | |||
N | 450 | 450 | 450 | 450 |
R2 | 0.805 | 0.681 | 0.711 | 0.335 |
表5 回归结果
Tab.5 Regression results
变量 | (1) | (2) | (3) | (4) |
---|---|---|---|---|
最小二乘法 | 空间固定 | 时间空间双固定 | 固定效应的空间杜宾 | |
lnEST | 0.650***(15.16) | 0.607***(14.27) | 0.540***(12.35) | 0.568***(10.51) |
lnMS | -0.004(-0.12) | 0.016(0.88) | 0.001(0.05) | 0.004(0.23) |
lnUR | -0.075(-0.41) | 0.284(1.45) | 0.563**(2.50) | 0.750***(3.04) |
lnFDI | -0.116***(-4.82) | -0.057***(-3.14) | -0.076***(-4.22) | -0.061***(-3.30) |
lnMP | 0.706***(17.40) | 0.289***(7.62) | 0.172***(3.85) | 0.127***(2.79) |
lnES | -0.379***(-4.57) | 0.074(1.07) | 0.431***(3.12) | 0.338**(2.47) |
W·lnEST | -0.036(-0.29) | |||
W·lnMS | 0.017(0.50) | |||
W·lnUR | -0.921**(-2.13) | |||
W·lnFDI | 0.052(1.05) | |||
W·lnMP | 0.216**(2.15) | |||
W·lnES | -0.350*(-1.80) | |||
rho | 0.083*(1.11) | |||
sigma2e | 0.027***(14.48) | |||
N | 450 | 450 | 450 | 450 |
R2 | 0.805 | 0.681 | 0.711 | 0.335 |
变量 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|
lnEST | 0.570*** | 0.003 | 0.573*** |
(10.25) | (0.03) | (4.21) | |
lnMS | 0.003 | 0.017 | 0.021 |
(0.21) | (0.49) | (0.53) | |
lnUR | 0.763*** | -0.914** | -0.151 |
(3.23) | (-2.00) | (-0.33) | |
lnFDI | -0.060*** | 0.053 | -0.007 |
(-3.33) | (0.99) | (-0.12) | |
lnMP | 0.131*** | 0.241** | 0.372*** |
(3.00) | (2.29) | (3.39) | |
lnES | 0.333** | -0.351* | -0.018 |
(2.48) | (-1.79) | (-0.09) |
表6 空间效应分解
Tab.6 Spatial effect decomposition
变量 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|
lnEST | 0.570*** | 0.003 | 0.573*** |
(10.25) | (0.03) | (4.21) | |
lnMS | 0.003 | 0.017 | 0.021 |
(0.21) | (0.49) | (0.53) | |
lnUR | 0.763*** | -0.914** | -0.151 |
(3.23) | (-2.00) | (-0.33) | |
lnFDI | -0.060*** | 0.053 | -0.007 |
(-3.33) | (0.99) | (-0.12) | |
lnMP | 0.131*** | 0.241** | 0.372*** |
(3.00) | (2.29) | (3.39) | |
lnES | 0.333** | -0.351* | -0.018 |
(2.48) | (-1.79) | (-0.09) |
变量 | (1) | 变量 | (2) |
---|---|---|---|
变量滞后一期 | 经济距离矩阵 | ||
lnEST | 0.500***(10.34) | lnEST | 0.550***(12.01) |
lnMS | -0.009(-0.55) | lnMS | 0.007(0.44) |
lnUR | 1.020***(4.24) | lnUR | 0.479**(2.05) |
lnFDI | -0.077***(-4.23) | lnFDI | -0.073***(-4.18) |
lnMP | 0.107**(2.34) | lnMP | 0.187***(4.57) |
lnES | 0.483***(3.32) | lnES | 0.338***(2.64) |
N | 420 | N | 450 |
R2 | 0.128 | R2 | 0.415 |
表7 稳健性检验 (Robustness test)
Tab.7
变量 | (1) | 变量 | (2) |
---|---|---|---|
变量滞后一期 | 经济距离矩阵 | ||
lnEST | 0.500***(10.34) | lnEST | 0.550***(12.01) |
lnMS | -0.009(-0.55) | lnMS | 0.007(0.44) |
lnUR | 1.020***(4.24) | lnUR | 0.479**(2.05) |
lnFDI | -0.077***(-4.23) | lnFDI | -0.073***(-4.18) |
lnMP | 0.107**(2.34) | lnMP | 0.187***(4.57) |
lnES | 0.483***(3.32) | lnES | 0.338***(2.64) |
N | 420 | N | 450 |
R2 | 0.128 | R2 | 0.415 |
变量 | I类型 | II类型 | III类型 |
---|---|---|---|
lnEST | 0.578***(12.24) | 0.538***(3.39) | 0.099(0.44) |
lnMS | 0.014(0.72) | -0.011(-0.16) | -0.096(-0.61) |
lnUR | 0.444*(1.93) | 1.292***(2.73) | -1.050*(-1.84) |
lnFDI | -0.064***(-3.18) | -0.138**(-2.48) | 0.018(0.22) |
lnMP | 0.470***(8.23) | 0.090**(2.11) | 0.415**(2.23) |
lnES | -0.159*(-1.70) | -0.018(-0.15) | 0.319(1.14) |
N | 330 | 60 | 60 |
R2 | 0.673 | 0.807 | 0.858 |
表8 三大跃迁类型异质性
Tab.8 Heterogeneity of the three transition types
变量 | I类型 | II类型 | III类型 |
---|---|---|---|
lnEST | 0.578***(12.24) | 0.538***(3.39) | 0.099(0.44) |
lnMS | 0.014(0.72) | -0.011(-0.16) | -0.096(-0.61) |
lnUR | 0.444*(1.93) | 1.292***(2.73) | -1.050*(-1.84) |
lnFDI | -0.064***(-3.18) | -0.138**(-2.48) | 0.018(0.22) |
lnMP | 0.470***(8.23) | 0.090**(2.11) | 0.415**(2.23) |
lnES | -0.159*(-1.70) | -0.018(-0.15) | 0.319(1.14) |
N | 330 | 60 | 60 |
R2 | 0.673 | 0.807 | 0.858 |
类型 | 细分行业(增长率) | ||||
---|---|---|---|---|---|
高碳 行业 | 有色金属冶炼和压延加工业 (7.49%) | 黑色金属冶炼和压延加工业 (6.16%) | 非金属矿物制品业 (5.08%) | 化学原料和化学制品制造业(1.67%) | 石油、煤炭及其他燃料加工业(2.54%) |
低 碳 行 业 | 其他制造业(3.20%) | 专用设备制造业(6.59%) | 通用设备制造业(3.88%) | 金属制品业(6.13%) | 化学纤维制造业(0.50%) |
医药制造业 (2.18%) | 印刷和记录媒介复制业(1.93%) | 家具制造业(0.07%) | 农副食品加工业 (2.19%) | 食品制造业 (2.49%) | |
酒、饮料和精制茶制造业(1.73%) | |||||
计算机、通信和其他电子设备制造业(-1.15%) | 仪器仪表制造业 (-0.23%) | 废弃资源综合利用业 (-8.38%) | 电气机械和器材制造业 (-0.47%) | 交通运输业 (-0.01%) | |
木材加工和木、竹、藤、棕、草制品业(-2.41%) | 文教、工美、体育和娱乐用品制造业(-12.93%) | 造纸和纸制品业 (-1.10%) | 皮革、毛皮、羽毛及其制品和制鞋业(-1.12%) | 橡胶和塑料制品业(-1.83%) | |
纺织服装、服饰 (-3.01%) | 烟草制品业 (-0.32%) | 纺织业 (-3.14%) |
表9 制造业细分行业的碳排放年平均增长率
Tab.9 Average annual growth rate of carbon emissions in manufacturing subsectors
类型 | 细分行业(增长率) | ||||
---|---|---|---|---|---|
高碳 行业 | 有色金属冶炼和压延加工业 (7.49%) | 黑色金属冶炼和压延加工业 (6.16%) | 非金属矿物制品业 (5.08%) | 化学原料和化学制品制造业(1.67%) | 石油、煤炭及其他燃料加工业(2.54%) |
低 碳 行 业 | 其他制造业(3.20%) | 专用设备制造业(6.59%) | 通用设备制造业(3.88%) | 金属制品业(6.13%) | 化学纤维制造业(0.50%) |
医药制造业 (2.18%) | 印刷和记录媒介复制业(1.93%) | 家具制造业(0.07%) | 农副食品加工业 (2.19%) | 食品制造业 (2.49%) | |
酒、饮料和精制茶制造业(1.73%) | |||||
计算机、通信和其他电子设备制造业(-1.15%) | 仪器仪表制造业 (-0.23%) | 废弃资源综合利用业 (-8.38%) | 电气机械和器材制造业 (-0.47%) | 交通运输业 (-0.01%) | |
木材加工和木、竹、藤、棕、草制品业(-2.41%) | 文教、工美、体育和娱乐用品制造业(-12.93%) | 造纸和纸制品业 (-1.10%) | 皮革、毛皮、羽毛及其制品和制鞋业(-1.12%) | 橡胶和塑料制品业(-1.83%) | |
纺织服装、服饰 (-3.01%) | 烟草制品业 (-0.32%) | 纺织业 (-3.14%) |
变量 | 高碳行业 | 低碳行业 | ||
---|---|---|---|---|
时间个体双固定 | 空间固定模型 | 时间个体双固定 | 空间固定模型 | |
lnEST | 0.631***(14.55) | 0.631***(15.29) | 0.209**(2.22) | 0.204**(2.33) |
lnMS | -0.001(-0.05) | 0.002(0.12) | 0.030(0.76) | 0.019(0.54) |
lnUR | 0.703***(3.14) | 0.902***(4.02) | -0.759(-1.56) | -0.475(-0.99) |
lnFDI | -0.089***(-4.99) | -0.100***(-5.71) | -0.033(-0.85) | -0.045(-1.21) |
lnMP | 0.206***(4.66) | 0.217***(5.30) | -0.137(-1.43) | -0.118(-1.36) |
lnES | 0.379***(2.77) | 0.395***(2.87) | 0.800***(2.68) | 0.827***(2.84) |
个体固定 | 是 | 是 | 是 | 是 |
年份固定 | 是 | 否 | 是 | 否 |
N | 450 | 450 | 450 | 450 |
R2 | 0.745 | 0.380 | 0.081 | 0.052 |
表10 分行业异质性
Tab.10 Heterogeneity by industry
变量 | 高碳行业 | 低碳行业 | ||
---|---|---|---|---|
时间个体双固定 | 空间固定模型 | 时间个体双固定 | 空间固定模型 | |
lnEST | 0.631***(14.55) | 0.631***(15.29) | 0.209**(2.22) | 0.204**(2.33) |
lnMS | -0.001(-0.05) | 0.002(0.12) | 0.030(0.76) | 0.019(0.54) |
lnUR | 0.703***(3.14) | 0.902***(4.02) | -0.759(-1.56) | -0.475(-0.99) |
lnFDI | -0.089***(-4.99) | -0.100***(-5.71) | -0.033(-0.85) | -0.045(-1.21) |
lnMP | 0.206***(4.66) | 0.217***(5.30) | -0.137(-1.43) | -0.118(-1.36) |
lnES | 0.379***(2.77) | 0.395***(2.87) | 0.800***(2.68) | 0.827***(2.84) |
个体固定 | 是 | 是 | 是 | 是 |
年份固定 | 是 | 否 | 是 | 否 |
N | 450 | 450 | 450 | 450 |
R2 | 0.745 | 0.380 | 0.081 | 0.052 |
[1] | 刘玉, 蒋治, 张可云. 制造业区位优势变化对劳动力空间流动的影响与作用机制. 地理学报, 2023, 78(4): 840-858. |
LIU Y, JIANG Z, ZHANG K. The influence and mechanism of the change of location advantage in manufacturing on the labor spatial mobility. Acta Geographica Sinica, 2023, 78(4): 840-858. | |
[2] | 周正柱, 张明. 绿色产业政策量化与减排效果研究:以长三角区域为例.长江流域资源与环境, 2023,32(11):2254-2272. |
ZHOU Z, ZHANG M. Research on quantification of green industrial policies and emission reduction effects: A case study of the Yangtze River Delta Region.Resources and Environment in the Yangtze Basin,2023,32(11):2254-2272. | |
[3] | 徐莉. 畅通供需循环视角下中国制造业转型升级的困境与对策. 企业经济, 2023, 42(8): 117-124. |
XU L. The dilemma and countermeasures of transformation and upgrading of China's manufacturing industry from the perspective of unimpeded supply and demand cycle. Enterprise Economy, 2023, 42(8): 117-124. | |
[4] | 王伟龙, 王健龙, 谢成兴, 等."中国制造2025"试点示范城市建设对城市绿色发展效率的影响.中国人口·资源与环境, 2023, 33(9): 147-158. |
WANG W, WANG J, XIE C, et al. Impact of "Made in China 2025" pilot demonstration city construction on urban green development efficiency. China Population, Resources and Environment, 2023, 33(9): 147-158. | |
[5] | 夏小禾. 聚焦机械、电子、汽车三大行业提升制造业可靠性. 今日制造与升级, 2023(8): 14-15. |
XIA X. Focus on the three major industries of machinery, electronics and automobiles to improve the reliability of manufacturing. Manufacture & Upgrading Today, 2023(8): 14-15. | |
[6] | DERINDAG O, MAYDYBURA A, KALRA A, et al. Carbon emissions and the rising effect of trade openness and foreign direct investment: Evidence from a threshold regression model. Heliyon, 2023, 9(7): e17448. |
[7] | 朱泳丽, 丁利杰. 长三角城市群碳排放强度的空间效应及影响因素——基于产业转移视角. 资源科学, 2022, 44(7): 1373-1387. |
ZHU Y, DING L. Spatial effects and influencing factors of carbon emission intensity in the Yangtze River Delta urban agglomeration: An industrial transfer-based perspective. Resources Science, 2022, 44(7): 1373-1387. | |
[8] | 王少剑, 田莎莎, 蔡清楠, 等. 产业转移背景下广东省工业碳排放的驱动因素及碳转移分析. 地理研究, 2021, 40(9): 2606-2622. |
WANG S, TIAN S, CAI Q, et al. Driving factors and carbon transfer of industrial carbonemissions in Guangdong province under the background of industrial transfer. Geographical Research, 2021, 40(9): 2606-2622. | |
[9] | 王军, 王杰, 王叶薇. 数字金融发展如何影响制造业碳强度? 中国人口·资源与环境, 2022, 32(7): 1-11. |
WANG J, WANG J, WANG Y. How does digital finance affect the carbon intensity of the manufacturing industry? China Population, Resources and Environment, 2022, 32(7): 1-11. | |
[10] | 黄德春, 沈雪梅, 竺运. 长江经济带制造业碳排放效率的时空演变及影响因素研究. 长江流域资源与环境, 2023, 32(6): 1113-1126. |
HUANG D, SHEN X, ZHU Y. Spatio-temporal evolution and influencing factors of carbon emission efficiency of manufacturing industry in Yangtze River Economic Belt. Resources and Environment in the Yangtze Basin, 2023, 32(6): 1113-1126. | |
[11] | 江旭. 中国制造业碳排放强度的差异性分析. 统计与决策, 2012(17): 141-143. |
JIANG X. The difference analysis of carbon emission intensity of manufacturing industry in China. Statistics & Decision, 2012(17): 141-143. | |
[12] | 蔺雪芹, 边宇, 王岱. 京津冀地区工业碳排放效率时空演化特征及影响因素. 经济地理, 2021, 41(6): 187-195. |
LIN X, BIAN Y, WANG D. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emission efficiency in Beijing-Tianjin-Hebei Region. Economic Geography, 2021, 41(6): 187-195. | |
[13] | 孙彦明, 刘士显. "双碳"目标下中国交通运输碳排放达峰预测. 生态经济, 2023, 39(12): 33-40. |
SUN Y, LIU S. Prediction of Chinese transportation carbon emissions peaking under the"double carbon"goal. Ecological Economy, 2023, 39(12): 33-40. | |
[14] | LIN, B, BENJAMIN N. Influencing factors on carbon emissions in China transport industry: A new evidence from quantile regression analysis. Journal of Cleaner Production, 2017,150: 175-187. |
[15] | 刘朝,王梓林,原慈佳.结构视域下自主技术创新对工业碳排放的影响及趋势预测.中国人口·资源与环境, 2022, 32(7):12-21. |
LIU C, WANG Z, YUAN C. Impact of independent technological innovation on industrial carbon emissions and trend prediction from the perspective of structure.China Population,Resources and Environment,2022,32(7): 12-21. | |
[16] | 贾科利, 李小雨, 魏慧敏, 等. 宁夏县域土地利用碳排放空间分异与风险研究. 干旱区地理, 2023, 46(11): 1757-1767. |
JIA K, LI X, WEI H, et al. Spatial differentiation and risk of land use carbon emissions in county region of Ningxia. Arid Land Geography, 2023, 46(11): 1757-1767. | |
[17] | JIANG T, LI S, YU Y, et al. Energy-related carbon emissions and structural emissions reduction of China's construction industry: The perspective of input-output analysis. Environmental Science and Pollution Research, 2022, 29(26): 39515-39527. |
[18] | 刘晓婷, 陈闻君.基于ESDA-GIS的新疆能源碳排放空间差异动态演化分析.干旱区地理, 2016,39( 3) : 678-685. |
LIU X, CHEN W. Dynamic evolution of spatial disparity of energy carbon emissions in Xinjiang based on ESDA-GIS. Arid Land Geography, 2016, 39( 3) : 678-685. | |
[19] | LIU M, WEN J, MENG Y, et al. Carbon emission structure decomposition analysis of manufacturing industry from the perspective of input-output subsystem: A case study of China. Environmental Science and Pollution Research, 2023, 30(7): 19012-19029. |
[20] | PAN W, PAN W, SHI Y, et al. China's inter-regional carbon emissions: An input-output analysis under considering national economic strategy. Journal of Cleaner Production, 2018, 19 (7) : 148-160. |
[21] | 赵先超, 滕洁, 谭书佳. 基于投入产出法的湖南省旅游业碳排放测算及GRA关联度分析.世界地理研究, 2018, 27(3): 164-174. |
ZHAO X, TENG J, TAN S. Estimation of tourism carbon emissions and correlation analysis of GRA in Hunan Province based on Input Output Method. World Regional Studies, 2018, 27(3): 164-174. | |
[22] | HEINONEN J, JUNNILA S. Implicationa of urban structure on carbon consumption in metropolitan areas. Environmental Research Letters, 2011, 6(1): 014018. |
[23] | 刘晶茹, Peters G P, 王如松, 等. 综合生命周期分析在可持续消费研究中的应用.生态学报, 2007, 27(12): 5331-5336. |
LIU J, PETERS G, WANG R, et al. Hybrid life-cycle analysis and its applications in sustainable consumption researches. Acta Ecologica Sinica, 2007, 27(12): 5331-5336. | |
[24] | 王霞, 张丽君, 秦耀辰, 等. 中国制造业碳排放时空演变及驱动因素研究. 干旱区地理, 2020, 43(2): 536-545. |
WANG X, ZHANG L, QIN Y, et al. Spatial - temporal evolution on the manufacturing industry's carbon emission and its driving factor in China. Arid Land Geography, 2020, 43(2): 536-545. | |
[25] | 王霞, 张丽君, 秦耀辰, 等. 中国高碳制造业碳排放时空演变及其驱动因素. 资源科学, 2020, 42(2): 323-333. |
WANG X, ZHANG L, QIN Y, et al. Spatiotemporal changes of carbon emissions in high-carbon manufacturing industry in China and driving factors. Resources Science, 2020, 42(2): 323-333. | |
[26] | WANG L, YOU J. An integrated perspective on the spatial-temporal characteristics of China's manufacturing carbon emissions at the regional and industry levels. Energy Reports, 2023, 10: 1688-1701. |
[27] | XU Q, DONG Y, YANG R. Urbanization impact on carbon emissions in the Pearl River Delta region: Kuznets curve relationships. Journal of Cleaner Production, 2018, 180: 514-523. |
[28] | 吴茜, 陈强强. 甘肃省行业碳排放影响因素及脱钩努力研究. 干旱区地理, 2023, 46(2): 274-283. |
WU Q, CHEN Q. Influencing factors and decoupling efforts of industry-related carbon emissions in Gansu Province. Arid Land Geography, 2023, 46(2): 274-283. | |
[29] | 沈友娣, 章庆, 严霜. 安徽制造业碳排放驱动因素、锁定状态与解锁路径研究.华东经济管理, 2014, 28(6): 27-30. |
SHEN Y, ZHANG Q, YAN S. Driving factors, lock-in state and unlock path of carbon emissions from the manufacturing industry in Anhui Province. East China Economic Management, 2014, 28(6): 27-30. | |
[30] | 徐盈之, 徐康宁, 胡永舜. 中国制造业碳排放的驱动因素及脱钩效应. 统计研究, 2011, 28(7): 55-61. |
XU Y, XU K, HU Y. Driving factors and decoupling effect of carbon emissions: evidence from China's manufacturing sector. Statistical Research, 2011, 28(7): 55-61. | |
[31] | LIU C, XIN L, LI J. Environmental regulation and manufacturing carbon emissions in China: A new perspective on local government competition. Environmental Science and Pollution Research, 2022, 29(24): 36351-36375. |
[32] | WEN H, CHEN Z, YANG Q, et al. Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors. Energy, 2022, 245: 123262. |
[33] | 周迪, 罗东权. 绿色税收视角下产业结构变迁对中国碳排放的影响. 资源科学, 2021, 43(4): 693-709. |
ZHOU D, LUO D. Green taxation, industrial structure transformation, and carbon emissions reduction. Resources Science, 2021, 43(4): 693-709. | |
[34] | 张军涛, 朱悦. 制造业转型升级差异化路径与绿色全要素生产率——基于调节效应和空间效应视角.商业研究, 2023(02): 9-18. |
ZHANG J, ZHU Y. Research on the impact of manufacturing transformation and upgrading differentiation path on green total factor productivity: From the perspective of regulatory effect and spatial effect. Commercial Research, 2023(02): 9-18. | |
[35] | 李治国, 朱永梅, 吴茜. 山东省制造业碳排放驱动因素研究——基于GDIM方法. 华东经济管理, 2019, 33(4): 30-36. |
LI Z, ZHU Y, WU Q. GDIM-based research on driving factors of carbon emissions from manufacturing industry in Shandong Province. East China Economic Management, 2019, 33(4): 30-36. | |
[36] | JIN B, HAN Y. Influencing factors and decoupling analysis of carbon emissions in China's manufacturing industry. Environmental Science and Pollution Research, 2021, 28(45): 64719-64738. |
[37] | XIN L, SUN H, XIA X, et al. How does renewable energy technology innovation affect manufacturing carbon intensity in China? Environmental Science and Pollution Research, 2022, 29(39): 59784-59801. |
[38] | FANG G, GAO Z, TIAN L, et al. What drives urban carbon emission efficiency? Spatial analysis based on nighttime light data. Applied Energy, 2022, 312: 118772. |
[39] | WANG J, DONG X, DONG K. How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China. Energy Economics, 2022, 111: 106107. |
[40] | LIU J, YANG Q, OU S, et al. Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors. Energy, 2022, 248: 123568. |
[41] | 冯俊华, 韩美. 技术创新与碳排放效率耦合协调关系及驱动力研究——以装备制造业细分行业为例.环境污染与防治, 2023, 45(1): 128-132. |
FENG J, HAN M. Research on the coupling coordination and driving force of technological innovation and carbon emission efficiency:Taking the sub-sectors of equipment manufacturing industry as an example. Environmental Pollution&Control, 2023, 45(1): 128-132. | |
[42] | 张悦, 王晶晶, 程钰. 中国工业碳排放绩效时空特征及技术创新影响机制. 资源科学, 2022, 44(7): 1435-1448. |
ZHANG Y, WANG J, CHENG Y. Spatiotemporal characteristics of China's industrial carbon emission performance and influence mechanism of technological innovation. Resources Science, 2022, 44(7): 1435-1448. | |
[43] | 王瑛, 何艳芬.中国省域二氧化碳排放的时空格局及影响因素. 世界地理研究, 2020, 29(3): 512-522. |
WANG Y, HE Y. Spatiotemporal dynamics and influencing factors of provincial carbon emissions in China. World Regional Studies, 2020, 29(3): 512-522. | |
[44] | LIU T, WU Y. CHAU C.An overview of carbon emission mitigation in the food industry: Efforts, challenges, and opportunities. Processes, 2023, 11(7): 1993. |
[45] | 郭忻怡, 闫庆武, 谭晓悦, 等. 基于DMSP/OLS与NDVI的江苏省碳排放空间分布模拟. 世界地理研究, 2016, 25(4): 102-110. |
GUO X, YAN Q, TAN X, et al. Spatial distribution of carbon emissions based on DMSP/OLS nighttime light data and NDVI in Jiangsu province. World Regional Studies, 2016, 25(4): 102-110. | |
[46] | ANG B. The LMDI approach to decomposition analysis: A practical guide. Energy Policy, 2005, 33: 867-871. |
[47] | WANG S, LIU X, ZHOU C,et al. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China's megacities. Applied Energy, 2018,185: 189-200. |
[48] | 潘竟虎, 张永年. 中国能源碳足迹时空格局演化及脱钩效应. 地理学报, 2021, 76(1): 206-222. |
PAN J, ZHANG Y. Spatiotemporal patterns of energy carbon footprint and decoupling effect in China. Acta Geographica Sinica, 2021, 76(1): 206-222. | |
[49] | 尹上岗, 马志飞, 李在军.长三角地区住宅售租比时空格局演变及影响机制. 地理研究, 2021, 40(6): 1701-1715. |
YIN S, MA Z, LI Z. Spatio-temporal pattern evolution and influence mechanism of housing price-to-rent ratio in the Yangtze River Delta. Geographical Research, 2021, 40(6): 1701-1715. | |
[50] | 纪小美,王超,赵晓迪.中国地方政府财政赤字率的时空演变——地理监视的应用.地理科学,2019,39(3):424-432. |
JI X, WANG C, ZHAO X. The spatio-temporal evolution in fiscal deficit ratio of local government in China: The application of geo-surveillance. Scientia Geographica Sinica, 2019, 39(3): 424-432. | |
[51] | 程钰,张悦,徐英启,等.区域碳排放效率时空演变与技术创新影响研究. 北京:科学出版社,2024. |
CHENG Y, ZHANG Y, XU Y, et al. Spatio-temporal Evolution of Regional Carbon Emission Efficiency and the Impact of Technological Innovation . Beijing: Science Press, 2024. | |
[52] | 王少剑, 谢紫寒, 王泽宏. 中国县域碳排放的时空演变及影响因素.地理学报, 2021, 76(12):3103-3118. |
WANG S, XIE Z, WANG Z. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China. Acta Geographica Sinica, 2021, 76(12):3103-3118. | |
[53] | 王青, 傅莉媛, 孙海添.中国工业生产能源消费碳排放的区域差异、动态演进与影响因素. 资源科学, 2023, 45(6):1239-1254. |
WANG Q, FU L, SUN H. Regional differences, dynamic changes, and influencing factors of carbon emissions from industrial production energy consumption in China. Resources Science, 2023, 45(6):1239-1254. | |
[54] | YOU J, CHEN X, CHEN J. Decomposition of industrial electricity efficiency and electricity-saving potential of special economic zones in China considering the heterogeneity of administrative hierarchy and regional location. Energies, 2021, 14(17): 5468. |
[55] | ZHANG S, YI B, GUO F, et al. Exploring selected pathways to low and zero CO2 emissions in China's iron and steel industry and their impacts on resources and energy. Journal of Cleaner Production, 2022, 340: 130813. |
[56] | 代新玲. 技术进步、双重价值链嵌入与制造业碳减排. 技术经济与管理研究, 2023(7): 97-102. |
DAI X. Technological progress, Dual Value chain embedding and manufacturing carbon reduction. Journal of Technical Economics & Management, 2023(7): 97-102. | |
[57] | 张平淡, 屠西伟. 制造业集聚对改进城市碳全要素生产率的影响研究.城市问题, 2023(6): 37-45. |
ZHANG P, TU X. Research on the impact of manufacturing agglomeration on improving urban carbon total factor productivity. Urban Problems, 2023 (6):37-45. |
[1] | 覃雄合, 解迎会, 刘树峰, 佘艺. 中国城市科创风险投资网络的空间演化及影响因素[J]. 世界地理研究, 2025, 34(7): 83-97. |
[2] | 杨丹, 徐逸伦. 基于价值链的云南省咖啡产业空间发展演化研究[J]. 世界地理研究, 2025, 34(5): 124-136. |
[3] | 孙红杰, 邢宛飞, 李亚钦. 全球稻米贸易网络特征分析及启示[J]. 世界地理研究, 2025, 34(5): 19-32. |
[4] | 朱雨欣, 金文纨, 林雄斌, 朱晟君. 农产品贸易及影响因素研究进展与理论反思[J]. 世界地理研究, 2025, 34(5): 33-48. |
[5] | 崔岩, 富晨. 东亚区域价值链网络的演进特征及影响因素[J]. 世界地理研究, 2025, 34(5): 65-79. |
[6] | 李光勤, 李梦娇, 王江姣. 中国省域数字经济与经济高水平对外开放耦合协调特征及影响因素分析[J]. 世界地理研究, 2025, 34(5): 93-109. |
[7] | 武荣伟, 王远鑫, 王堠崟, 陈利. 2010—2020年中国县域高技能人才时空格局及其影响因素[J]. 世界地理研究, 2025, 34(4): 139-151. |
[8] | 李志远, 马芳芳, 丁志伟. 2013—2020年中国财政千强镇的时空变化及影响因素分析[J]. 世界地理研究, 2025, 34(1): 138-153. |
[9] | 李颉, 许泽嘉, 林煦丹. 2000—2019年全球病毒性肝炎死亡率的时空分异与影响因素[J]. 世界地理研究, 2025, 34(1): 43-55. |
[10] | 张旭, 朱昀阳, 何金廖. 基于电子竞技活动的中国城市网络空间结构与影响因素分析[J]. 世界地理研究, 2025, 34(1): 82-93. |
[11] | 赵亚博, 黄柳倩, 胡蝶, 陈瑞炀, 谢涤湘, 范建红. “流空间”视角下珠三角城市群综合客运网络特征及影响因素[J]. 世界地理研究, 2024, 33(9): 163-175. |
[12] | 王素凤, 洪剑涛, 李化夫. 中国城市能源消费碳排放影响因素的时空异质性[J]. 世界地理研究, 2024, 33(8): 102-116. |
[13] | 安琳, 夏丽丽, 张佳锃, 林剑铬. 珠三角区域经济韧性的空间演化及影响因素研究[J]. 世界地理研究, 2024, 33(8): 132-147. |
[14] | 陈宇奇, 蒋雪中. 长江南京以下港口城市可持续效率演变与影响因素分析[J]. 世界地理研究, 2024, 33(7): 116-127. |
[15] | 宋关东, 唐承丽, 周国华. 基于县域尺度的乡村韧性测量及其影响因素分析[J]. 世界地理研究, 2024, 33(6): 128-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||