主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2024, Vol. 33 ›› Issue (4): 155-166.DOI: 10.3969/j.issn.1004-9479.2024.04.20220192

• 文化与社会 • 上一篇    

中国省域物流碳排放效率的演化特征及收敛性分析

李晓梅(), 黄俊()   

  1. 辽宁工程技术大学营销管理学院,葫芦岛 125105
  • 收稿日期:2022-03-22 修回日期:2022-07-09 出版日期:2024-04-15 发布日期:2024-04-24
  • 通讯作者: 黄俊
  • 作者简介:李晓梅(1974—),女,教授,博士生导师,研究方向为技术经济评价与创新管理,E-mail:75264255@qq.com
  • 基金资助:
    国家自然科学基金项目(52070091);辽宁省社会科学规划基金(L19BJY028);辽宁省社科联项目(2022LSLYBKT-018)

Evolution characteristics and convergence analysis of carbon emission efficiency of provincial logistics in China

Xiaomei LI(), Jun HUANG()   

  1. School of Marketing Management, Liaoning Technical University, Huludao 125105, China
  • Received:2022-03-22 Revised:2022-07-09 Online:2024-04-15 Published:2024-04-24
  • Contact: Jun HUANG

摘要:

以2006—2019年中国30个省域为研究对象,基于碳排放新评估准则,结合超效率DEA-ML模型和全局空间自相关分析,对中国实际物流碳排放效率进行重新测度与总体特征描述,进一步引入探索性时空数据分析方法及相关计量模型,深入探讨物流碳排放效率时空动态演化特征及其对收敛性的影响。结果表明:①中国物流碳排放效率处于中等水平,平均情况呈东高西低分布,大多省份处于规模报酬递增阶段,年际变动表现出动态增长趋势,受技术进步影响大,存在空间集聚特征。②物流碳排放效率的局部空间结构与空间依赖方向变化存在差异,在相邻省份间呈现较强的空间整合性,其时空迁跃具有转移惰性与路径锁定的功能。③省域物流碳排放效率不存在σ收敛,存在β收敛和俱乐部收敛。地区差异、物流集聚水平与信息化程度是条件β收敛的主要影响因素,物流碳排放效率时空演化更为曲折的地区存在更为显著的俱乐部收敛。

关键词: 物流碳排放效率, 时空演化, 收敛性分析, 探索性时空数据分析

Abstract:

30 provinces in China from 2006 to 2019 were studied, the Super-efficiency DEA-ML model and global spatial autocorrelation analysis method were combined to re-measure the actual logistics carbon emission efficiency and its overall characteristics in China, which based on the new assessment criteria for carbon emissions. The exploratory space-time data analysis method and related measurement models were further introduced to explore the space-time dynamic evolution characteristics of logistics carbon emission efficiency and its impact on convergence. The results suggest that: ①The efficiency of logistics carbon emissions is at a medium level in China and exists spatial agglomeration. The average is high in the east and low in the west. Increasing returns to scale exists in most provinces. Interannual variation shows a dynamic growth trend, and is greatly influenced by technological progress. ②The local spatial structure of logistics carbon emission efficiency differs from the direction of spatial dependence, The logistics carbon emission efficiency presents strong spatial integration among neighboring provinces, and has transfer inertia and path locking during dynamic evolution. ③Logistics carbon emission efficiency has no σ convergence and has β convergence and club convergence. Regional differences, logistics agglomeration level and degree of informatization are the main influencing factors of conditional β convergence, there is significant club convergence in areas with more tortuous temporal and spatial evolution of logistics carbon emission efficiency.

Key words: logistics carbon emission efficiency, spatiotemporal evolution, convergence analysis, exploratory space-time data analysis