World Regional Studies ›› 2024, Vol. 33 ›› Issue (11): 79-93.DOI: 10.3969/j.issn.1004-9479.2024.11.20230530
Previous Articles Next Articles
Shuhan DUAN1,2(), Yanming SUN1,2,3()
Received:
2023-08-10
Revised:
2023-11-26
Online:
2024-11-15
Published:
2024-11-27
Contact:
Yanming SUN
通讯作者:
孙燕铭
作者简介:
段舒涵(1999—),男,硕士研究生,研究方向为区域创新与可持续发展,E-mail:dsh1169417351@163.com。
基金资助:
Shuhan DUAN, Yanming SUN. Do high housing prices crowd out firm innovation inputs and outputs?[J]. World Regional Studies, 2024, 33(11): 79-93.
段舒涵, 孙燕铭. 高房价是否会挤出企业创新投入和产出?[J]. 世界地理研究, 2024, 33(11): 79-93.
变量类型 | 变量符号 | 变量描述与说明 |
---|---|---|
被解释变量 | Pia | 企业发明专利申请数量加1取自然对数 |
Paa | 企业全部专利申请数量加1取自然对数 | |
Puda | 企业实用新型和外观设计专利申请数量加1取自然对数 | |
Rdp | 企业研发投入总额与营业收入之比 | |
Rd | 企业研发投入总额取自然对数 | |
解释变量 | Hp | 商品房平均销售价格的自然对数 |
企业层面控制变量 | Asset | 企业资产总计的自然对数 |
Age | 企业年龄的自然对数 | |
Ec | 前三名高管薪酬占比 | |
Oir | 营业收入增长率=本年营业收入增加额/上年营业收入总额*100% | |
Profit | 利润率=净利润/营业收入*100% | |
Roa | 资产收益率=净利润/资产总计*100% | |
Rs | 前十大股东持股比例 | |
城市层面控制变量 | Fin | 金融机构年末贷款余额占GDP比例 |
Gre | 城市(市辖区)建成区绿化覆盖率 | |
Gro | GDP增长率 | |
Inc | 城镇居民人均可支配收入取自然对数 | |
Sci | 科技支出占地方政府财政支出比例 | |
Stu | 普通高等教育在校学生数取自然对数 | |
Thi | 第三产业在GDP中所占比例 | |
中介变量 | Sub | 政府补贴取自然对数 |
Cost | 营业成本取自然对数 | |
Cf |
Tab.1 Variable definition and description
变量类型 | 变量符号 | 变量描述与说明 |
---|---|---|
被解释变量 | Pia | 企业发明专利申请数量加1取自然对数 |
Paa | 企业全部专利申请数量加1取自然对数 | |
Puda | 企业实用新型和外观设计专利申请数量加1取自然对数 | |
Rdp | 企业研发投入总额与营业收入之比 | |
Rd | 企业研发投入总额取自然对数 | |
解释变量 | Hp | 商品房平均销售价格的自然对数 |
企业层面控制变量 | Asset | 企业资产总计的自然对数 |
Age | 企业年龄的自然对数 | |
Ec | 前三名高管薪酬占比 | |
Oir | 营业收入增长率=本年营业收入增加额/上年营业收入总额*100% | |
Profit | 利润率=净利润/营业收入*100% | |
Roa | 资产收益率=净利润/资产总计*100% | |
Rs | 前十大股东持股比例 | |
城市层面控制变量 | Fin | 金融机构年末贷款余额占GDP比例 |
Gre | 城市(市辖区)建成区绿化覆盖率 | |
Gro | GDP增长率 | |
Inc | 城镇居民人均可支配收入取自然对数 | |
Sci | 科技支出占地方政府财政支出比例 | |
Stu | 普通高等教育在校学生数取自然对数 | |
Thi | 第三产业在GDP中所占比例 | |
中介变量 | Sub | 政府补贴取自然对数 |
Cost | 营业成本取自然对数 | |
Cf |
变量 | 平均值 | 中位数 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|
Paa | 31.370 6 | 6 | 185.694 3 | 0 | 10 618 |
Pia | 14.273 7 | 2 | 103.827 3 | 0 | 5 962 |
Puda | 17.096 9 | 2 | 91.608 3 | 0 | 4 729 |
Rdp | 4.950 9 | 3.700 0 | 5.365 4 | 0 | 98.390 0 |
Rd | 2.151 1 | 0.538 3 | 9.521 4 | 0 | 293.917 6 |
Hp | 14.955 7 | 10.755 0 | 11.209 2 | 2.286 0 | 55.889 0 |
Sub | 6.340 6 | 6.551 7 | 2.084 9 | -3.575 6 | 13.654 0 |
Cost | 11.773 9 | 11.621 0 | 1.581 8 | 5.983 2 | 19.115 0 |
Cf | -4.350 6 | -10.556 7 | 10.413 9 | -17.616 4 | 18.182 1 |
Asset | 3.617 1 | 3.412 3 | 1.278 6 | 0.660 4 | 10.215 8 |
Age | 2.794 6 | 2.833 2 | 0.336 3 | 1.098 6 | 4.127 1 |
Ec | 5.136 3 | 5.112 0 | 0.688 0 | 1.329 7 | 8.535 4 |
Oir | 15.760 9 | 11.200 7 | 35.002 1 | -86.395 8 | 678.433 6 |
Profit | 0.086 6 | 0.079 8 | 0.234 6 | -16.645 6 | 4.175 2 |
Roa | 4.493 1 | 4.280 0 | 6.228 2 | -124.010 0 | 54.150 0 |
Rs | 60.017 1 | 61.260 0 | 14.654 6 | 10.570 0 | 101.160 0 |
Fin | 0.016 0 | 0.016 3 | 0.006 2 | 0.002 8 | 0.053 0 |
Gre | 42.212 1 | 42.170 0 | 3.789 2 | 14.760 0 | 58.110 0 |
Gro | 8.848 5 | 8.910 9 | 4.675 2 | -43.156 2 | 61.459 7 |
Inc | 1.425 8 | 1.448 5 | 0.326 7 | 0.323 8 | 2.033 9 |
Sci | 4.258 0 | 4.348 4 | 2.361 9 | 0.124 9 | 14.027 5 |
Stu | 3.156 5 | 3.307 8 | 1.024 9 | 0.051 2 | 4.880 6 |
Thi | 55.650 9 | 52.810 0 | 19.022 8 | 19.220 0 | 83.870 0 |
Tab.2 Descriptive statistics of variables
变量 | 平均值 | 中位数 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|
Paa | 31.370 6 | 6 | 185.694 3 | 0 | 10 618 |
Pia | 14.273 7 | 2 | 103.827 3 | 0 | 5 962 |
Puda | 17.096 9 | 2 | 91.608 3 | 0 | 4 729 |
Rdp | 4.950 9 | 3.700 0 | 5.365 4 | 0 | 98.390 0 |
Rd | 2.151 1 | 0.538 3 | 9.521 4 | 0 | 293.917 6 |
Hp | 14.955 7 | 10.755 0 | 11.209 2 | 2.286 0 | 55.889 0 |
Sub | 6.340 6 | 6.551 7 | 2.084 9 | -3.575 6 | 13.654 0 |
Cost | 11.773 9 | 11.621 0 | 1.581 8 | 5.983 2 | 19.115 0 |
Cf | -4.350 6 | -10.556 7 | 10.413 9 | -17.616 4 | 18.182 1 |
Asset | 3.617 1 | 3.412 3 | 1.278 6 | 0.660 4 | 10.215 8 |
Age | 2.794 6 | 2.833 2 | 0.336 3 | 1.098 6 | 4.127 1 |
Ec | 5.136 3 | 5.112 0 | 0.688 0 | 1.329 7 | 8.535 4 |
Oir | 15.760 9 | 11.200 7 | 35.002 1 | -86.395 8 | 678.433 6 |
Profit | 0.086 6 | 0.079 8 | 0.234 6 | -16.645 6 | 4.175 2 |
Roa | 4.493 1 | 4.280 0 | 6.228 2 | -124.010 0 | 54.150 0 |
Rs | 60.017 1 | 61.260 0 | 14.654 6 | 10.570 0 | 101.160 0 |
Fin | 0.016 0 | 0.016 3 | 0.006 2 | 0.002 8 | 0.053 0 |
Gre | 42.212 1 | 42.170 0 | 3.789 2 | 14.760 0 | 58.110 0 |
Gro | 8.848 5 | 8.910 9 | 4.675 2 | -43.156 2 | 61.459 7 |
Inc | 1.425 8 | 1.448 5 | 0.326 7 | 0.323 8 | 2.033 9 |
Sci | 4.258 0 | 4.348 4 | 2.361 9 | 0.124 9 | 14.027 5 |
Stu | 3.156 5 | 3.307 8 | 1.024 9 | 0.051 2 | 4.880 6 |
Thi | 55.650 9 | 52.810 0 | 19.022 8 | 19.220 0 | 83.870 0 |
变量 | Pia | Paa | Puda | Rdp | |||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Hp | -0.176 1** | -0.246 1*** | -0.139 1 | -0.183 6** | -0.128 5 | -0.148 7* | -0.666 3** |
(0.072 8) | (0.073 1) | (0.098 5) | (0.090 7) | (0.091 8) | (0.088 2) | (0.287 3) | |
Constant | 1.734 6*** | 2.559 4*** | 2.239 3*** | 3.257 9*** | 1.701 3 | 2.106 1* | 8.478 3*** |
(0.1798) | (0.9041) | (0.2430) | (1.1665) | (0.2266) | (1.1050) | (2.8911) | |
控制变量 | 否 | 是 | 否 | 是 | 否 | 是 | 是 |
时间固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
企业固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
行业固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
观测个数 | 12 355 | 12 355 | 12 355 | 12 355 | 12 355 | 12 355 | 12 355 |
R2 | 0.783 0 | 0.784 2 | 0.797 0 | 0.798 0 | 0.788 9 | 0.789 6 | 0.834 8 |
Tab.3 Influence of housing price on firm innovation
变量 | Pia | Paa | Puda | Rdp | |||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Hp | -0.176 1** | -0.246 1*** | -0.139 1 | -0.183 6** | -0.128 5 | -0.148 7* | -0.666 3** |
(0.072 8) | (0.073 1) | (0.098 5) | (0.090 7) | (0.091 8) | (0.088 2) | (0.287 3) | |
Constant | 1.734 6*** | 2.559 4*** | 2.239 3*** | 3.257 9*** | 1.701 3 | 2.106 1* | 8.478 3*** |
(0.1798) | (0.9041) | (0.2430) | (1.1665) | (0.2266) | (1.1050) | (2.8911) | |
控制变量 | 否 | 是 | 否 | 是 | 否 | 是 | 是 |
时间固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
企业固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
行业固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
观测个数 | 12 355 | 12 355 | 12 355 | 12 355 | 12 355 | 12 355 | 12 355 |
R2 | 0.783 0 | 0.784 2 | 0.797 0 | 0.798 0 | 0.788 9 | 0.789 6 | 0.834 8 |
变量 | 全样本 | 截尾1% | ||
---|---|---|---|---|
Pia(1) | Rdp(2) | Pia(3) | Rdp(4) | |
Hp | -0.228 0*** | -0.630 5** | ||
(-3.160 6) | (-2.169 5) | |||
Hptir | -0.509 2*** | -2.050 0*** | ||
(0.157 2) | (-4.310 2) | |||
Constant | 2.475 2*** | 8.675 4*** | 2.222 5** | 7.115 7** |
(0.887 4) | (2.894 4) | (2.488 8) | (2.364 3) | |
观测个数 | 12 355 | 12 355 | 12 147 | 12 147 |
R2 | 0.784 1 | 0.834 9 | 0.787 1 | 0.836 9 |
Tab.4
变量 | 全样本 | 截尾1% | ||
---|---|---|---|---|
Pia(1) | Rdp(2) | Pia(3) | Rdp(4) | |
Hp | -0.228 0*** | -0.630 5** | ||
(-3.160 6) | (-2.169 5) | |||
Hptir | -0.509 2*** | -2.050 0*** | ||
(0.157 2) | (-4.310 2) | |||
Constant | 2.475 2*** | 8.675 4*** | 2.222 5** | 7.115 7** |
(0.887 4) | (2.894 4) | (2.488 8) | (2.364 3) | |
观测个数 | 12 355 | 12 355 | 12 147 | 12 147 |
R2 | 0.784 1 | 0.834 9 | 0.787 1 | 0.836 9 |
变量 | 国有企业 | 非国有企业 | 高技术产业 | 非高技术产业 | ||||
---|---|---|---|---|---|---|---|---|
Pia(1) | Rdp(2) | Pia(3) | Rdp(4) | Pia(5) | Rdp(6) | Pia(7) | Rdp(8) | |
Hp | -0.281 6** | -0.350 7 | -0.227 4*** | -0.745 5* | -0.150 8 | -0.937 3 | -0.223 4** | -0.441 3* |
(0.129 3) | (-0.682 6) | (0.089 2) | (-1.945 2) | (0.149 0) | (-1.213 4) | (0.088 7) | (-1.815 3) | |
Constant | 4.645 2*** | 5.118 2 | 1.565 3 | 8.170 7* | -0.792 9 | 7.059 2 | 3.407 6*** | 7.574 4*** |
(1.245 8) | (1.310 4) | (0.973 2) | (1.932 7) | (1.616 2) | (0.901 3) | (1.088 5) | (3.567 8) | |
观测个数 | 3 346 | 3 346 | 8 976 | 8 976 | 3 860 | 3 860 | 8 487 | 8 487 |
R2 | 0.869 7 | 0.907 8 | 0.736 3 | 0.818 3 | 0.777 4 | 0.815 4 | 0.786 8 | 0.792 0 |
Tab.5 Effects of housing price on innovation input and output of firms under different ownership structure and in different levels of technology intensity
变量 | 国有企业 | 非国有企业 | 高技术产业 | 非高技术产业 | ||||
---|---|---|---|---|---|---|---|---|
Pia(1) | Rdp(2) | Pia(3) | Rdp(4) | Pia(5) | Rdp(6) | Pia(7) | Rdp(8) | |
Hp | -0.281 6** | -0.350 7 | -0.227 4*** | -0.745 5* | -0.150 8 | -0.937 3 | -0.223 4** | -0.441 3* |
(0.129 3) | (-0.682 6) | (0.089 2) | (-1.945 2) | (0.149 0) | (-1.213 4) | (0.088 7) | (-1.815 3) | |
Constant | 4.645 2*** | 5.118 2 | 1.565 3 | 8.170 7* | -0.792 9 | 7.059 2 | 3.407 6*** | 7.574 4*** |
(1.245 8) | (1.310 4) | (0.973 2) | (1.932 7) | (1.616 2) | (0.901 3) | (1.088 5) | (3.567 8) | |
观测个数 | 3 346 | 3 346 | 8 976 | 8 976 | 3 860 | 3 860 | 8 487 | 8 487 |
R2 | 0.869 7 | 0.907 8 | 0.736 3 | 0.818 3 | 0.777 4 | 0.815 4 | 0.786 8 | 0.792 0 |
变量 | 第二产业 | 第三产业 | 创新试点政策城市 | 非创新试点政策城市 | ||||
---|---|---|---|---|---|---|---|---|
Pia(1) | Rdp(2) | Pia(3) | Rdp(4) | Pia(5) | Rdp(6) | Pia(7) | Rdp(8) | |
Hp | -0.331 7*** (0.088 1) | -0.553 7* (-1.723 2) | -0.029 2 (0.183 6) | -0.668 6 (-0.972 4) | -0.193 5** (0.086 8) | -0.714 1** (-2.425 9) | -0.634 0*** (0.213 3) | 0.148 9 (0.406 8) |
Constant | 2.477 0** (1.221 6) | 7.391 5*** (2.860 9) | 1.539 2 (3.300 6) | 13.609 2 (0.744 7) | 1.841 7* (1.008 6) | 5.598 7 (1.462 5) | 2.859 1 (2.743 0) | 6.570 4 (1.025 0) |
观测数 | 9 808 | 9 808 | 2 394 | 2 394 | 10 490 | 10 490 | 1 863 | 1 863 |
R2 | 0.782 6 | 0.820 9 | 0.771 1 | 0.862 0 | 0.785 4 | 0.833 7 | 0.784 1 | 0.840 0 |
Tab.6 Effects of housing price on innovation input and output of firms in different industries and different pilot policy cities
变量 | 第二产业 | 第三产业 | 创新试点政策城市 | 非创新试点政策城市 | ||||
---|---|---|---|---|---|---|---|---|
Pia(1) | Rdp(2) | Pia(3) | Rdp(4) | Pia(5) | Rdp(6) | Pia(7) | Rdp(8) | |
Hp | -0.331 7*** (0.088 1) | -0.553 7* (-1.723 2) | -0.029 2 (0.183 6) | -0.668 6 (-0.972 4) | -0.193 5** (0.086 8) | -0.714 1** (-2.425 9) | -0.634 0*** (0.213 3) | 0.148 9 (0.406 8) |
Constant | 2.477 0** (1.221 6) | 7.391 5*** (2.860 9) | 1.539 2 (3.300 6) | 13.609 2 (0.744 7) | 1.841 7* (1.008 6) | 5.598 7 (1.462 5) | 2.859 1 (2.743 0) | 6.570 4 (1.025 0) |
观测数 | 9 808 | 9 808 | 2 394 | 2 394 | 10 490 | 10 490 | 1 863 | 1 863 |
R2 | 0.782 6 | 0.820 9 | 0.771 1 | 0.862 0 | 0.785 4 | 0.833 7 | 0.784 1 | 0.840 0 |
变量 | Sub(1) | Rd(2) | Pia(3) | Cost(4) | Rd(5) | Pia(6) | Cf(7) | Rd(8) | Pia(9) |
---|---|---|---|---|---|---|---|---|---|
Hp | 0.426 3*** (0.152 3) | 0.118 2*** (0.045 1) | -2.006 5** (0.912 7) | ||||||
Sub | 0.015 2*** (0.004 9) | -0.001 9 (0.007 3) | 0.296 6*** (0.042 4) | -0.019 1 (0.030 7) | 0.001 5*** (0.000 5) | -0.001 7** (0.000 8) | |||
Constant | 1.878 6 (1.472 0) | 5.437 9*** (0.663 8) | 2.157 9** (0.935 8) | 7.462 2*** (0.645 2) | 3.205 8*** (0.660 2) | 2.299 3** (0.918 3) | 1.129 2 (9.608 7) | 5.480 5*** (0.666 4) | 2.149 2** (0.932 4) |
R2 | 0.687 8 | 0.922 7 | 0.783 9 | 0.976 2 | 0.925 1 | 0.783 9 | 0.350 4 | 0.922 7 | 0.784 0 |
Tab.7 Effects of housing price on firm innovation input and output under government subsidy mechanism、the firm cost mechanism and the firm investment and financing mechanism
变量 | Sub(1) | Rd(2) | Pia(3) | Cost(4) | Rd(5) | Pia(6) | Cf(7) | Rd(8) | Pia(9) |
---|---|---|---|---|---|---|---|---|---|
Hp | 0.426 3*** (0.152 3) | 0.118 2*** (0.045 1) | -2.006 5** (0.912 7) | ||||||
Sub | 0.015 2*** (0.004 9) | -0.001 9 (0.007 3) | 0.296 6*** (0.042 4) | -0.019 1 (0.030 7) | 0.001 5*** (0.000 5) | -0.001 7** (0.000 8) | |||
Constant | 1.878 6 (1.472 0) | 5.437 9*** (0.663 8) | 2.157 9** (0.935 8) | 7.462 2*** (0.645 2) | 3.205 8*** (0.660 2) | 2.299 3** (0.918 3) | 1.129 2 (9.608 7) | 5.480 5*** (0.666 4) | 2.149 2** (0.932 4) |
R2 | 0.687 8 | 0.922 7 | 0.783 9 | 0.976 2 | 0.925 1 | 0.783 9 | 0.350 4 | 0.922 7 | 0.784 0 |
1 | ZHANG H, LI L, CHEN T, et al. Where will China's real estate market go under the economy's new normal? Cities, 2016, 55: 42-48. |
2 | YIN Y, ZENG X, ZHONG S, et al. How real estate shocks affect manufacturing value chain upgrading: Evidence from China. Buildings, 2022, 12(5): 546. |
3 | YANG Z, YANG H. The influence of real estate market on enterprise R&D investment. Science Research Management, 2022, 43(1): 153-160. |
4 | YU Q, CHEN Y, LIANG F. Housing market speculation and firm productivity: Evidence from China. China & World Economy, 2021, 29(5): 148-174. |
5 | 刘建江,石大千.高房价对企业创新的影响:是挤出还是挤入?——基于双边随机前沿模型的测算.中国软科学,2019(9):150-165. |
LIU J, SHI D. High housing prices and enterprise innovation: Crowding in or crowding out? Measurement and calculation based on bilateral stochastic frontier model. China Soft Science, 2019(9): 150-165. | |
6 | WEN H, GOODMAN A. Relationship between urban land price and housing price: Evidence from 21 provincial capitals in China. Habitat International, 2013, 40: 9-17. |
7 | 王丰龙,刘云刚.中国城市建设用地扩张与财政收入增长的面板格兰杰因果检验.地理学报,2013,68(12):1595-1606. |
WANG F, LIU Y. Panel granger test on urban land expansion and fiscal revenue growth in China's prefecture-level cities. Acta Geographica Sinica, 2013, 68(12): 1595-1606. | |
8 | WU Q, LI Y, YAN S. The incentives of China's urban land finance. Land Use Policy, 2015, 42: 432-442. |
9 | GYOURKO J, SHEN Y, WU J, et al. Land finance in China: Analysis and review. China Economic Review, 2022, 76: 101868. |
10 | 张戎捷,孙伟增,李昊,等.土地财政、企业税收补贴与招商引资.经济学报,2021,8(4):57-86. |
ZHANG R, SUN W, LI H, et al. Land financing, corporate tax subsidy, and investment attraction. China Journal of Economics, 2021, 8(4): 57-86. | |
11 | BRONZINI R, PISELLI P. The impact of R&D subsidies on firm innovation. Research Policy, 2016, 45(2): 442-457. |
12 | CZARNITZKI D, EBERSBERGER B, FIER A. The relationship between R&D collaboration, subsidies and R&D performance: Empirical evidence from Finland and Germany. Journal of Applied Econometrics, 2007, 22(7): 1347-1366. |
13 | FELDMAN M, KELLEY M. The ex-ante assessment of knowledge spillovers: Government R&D policy, economic incentives and private firm behavior. Research Policy, 2006, 35(10): 1509-1521. |
14 | MEULEMAN M, DE MAESENEIRE W. Do R&D subsidies affect SMEs' access to external financing? Research Policy, 2012, 41(3): 580-591. |
15 | 李玉龙.土地财政抑制了企业创新吗?——基于信贷错配视角的分析.财经理论与实践,2019,40(1):111-117. |
LI Y. Does land finance inhibit firm innovation?--Analysis from the perspective of credit misalloction. The Theory and Practice of Finance and Economics, 2019, 40(1), 111-117. | |
16 | GLAESER E, GYOURKO J. The economic implications of housing supply. Journal of Economic Perspectives, 2018, 32(1): 3-29. |
17 | LIANG W, LU M, ZHANG H. Housing prices raise wages: Estimating the unexpected effects of land supply regulation in China. Journal of Housing Economics, 2016, 33: 70-81. |
18 | 陈艳如,谷跃,宋伟轩.中国城市房价、收入与房价收入比的时空分异格局.地理研究,2021,40(9):2442-2458. |
CHEN Y, GU Y, SONG W. The spatiotemporal differentiation pattern of Chinese urban housing price, income and housing price-to-income ratio. Geographical Research, 2021, 40(9):2442-2458. | |
19 | ZHANG X, XU L. Rising house price and financing costs for SMEs: Evidence from a survey data in Jiangsu province. China Soft Science, 2020(4): 35-45. |
20 | LI J, SHAN Y, TIAN G, et al. Labor cost, government intervention, and corporate innovation: Evidence from China. Journal of Corporate Finance, 2020, 64: 101668. |
21 | 邹小芃,杨芊芊,何雨阳.汇率变动影响企业创新的地区间差异.经济地理,2016,36(12):37-43. |
ZOU X, YANG Q, HE Y. Regional differences about the impact of exchange rate movement on enterprise innovation. Economic Geography, 2016, 36(12): 37-43. | |
22 | 贺建风,张晓静.劳动力成本上升对企业创新的影响.数量经济技术经济研究,2018,35(8):56-73. |
HE J, ZHANG X. The influence of rising labor cost on enterprise innovation. Quantitative & Technical Economics, 2018, 35(8): 56-73. | |
23 | FRANK M, SHEN T. Investment and the weighted average cost of capital. Journal of Financial Economics, 2016, 119(2): 300-315. |
24 | LI D. Financial constraints, R&D investment, and stock returns. Review of Financial Studies, 2011, 24(9): 2974-3007. |
25 | GROSSMAN G, YANAGAWA N. Asset bubbles and endogenous growth. Journal of Monetary Economics, 1993, 31(1): 3-19. |
26 | KING I, FERGUSON D. Dynamic inefficiency, endogenous growth, and ponzi games. Journal of Monetary Economics, 1993, 32(1): 79-104. |
27 | MIAO J, WANG P. Sectoral bubbles, misallocation, and endogenous growth. Journal of Mathematical Economics, 2014, 53: 153-163. |
28 | CHANEY T, SRAER D, THESMAR D. The collateral channel: How real estate shocks affect corporate investment. American Economic Review, 2012, 102(6): 2381-2409. |
29 | RONG Z, NI J. How do housing cycles influence listed firms' R&D investment: Evidence from the collateral channel. Economics of Innovation and New Technology, 2020, 29(3): 287-312. |
30 | MAO Y. Managing innovation: The role of collateral. Journal of Accounting & Economics, 2021, 72(1): 29. |
31 | LI S, GAO N. Housing price and enterprise financing: Does mortgage effect exist? China Finance Review International, 2019, 9(1): 137-152. |
32 | RONG Z, WANG W, GONG Q. Housing price appreciation, investment opportunity, and firm innovation: Evidence from China. Journal of Housing Economics, 2016, 33: 34-58. |
33 | 李汝资,刘耀彬,王文刚,等.中国城市土地财政扩张及对经济效率影响路径.地理学报,2020,75(10):2126-2145. |
LI R, LIU Y, WANG W, et al. China's urban land finance expansion and the transmission routes to economic efficiency. Acta Geographica Sinica, 2020, 75(10): 2126-2145. | |
34 | 冯根福, 郑明波, 温军, 等. 究竟哪些因素决定了中国企业的技术创新——基于九大中文经济学权威期刊和A股上市公司数据的再实证 . 中国工业经济, 2021(1): 17-35. |
FENG G, ZHENG M, WEN J, et al. What determines the Chinese firms technological innovation——A re-empirical investigation based on the previous empirical literature of nine Chinese economics top journals and a-share listed company data. China Industrial Economics, 2021(1): 17-35. | |
35 | 黎文靖,郑曼妮.实质性创新还是策略性创新?——宏观产业政策对微观企业创新的影响.经济研究,2016,51(4):60-73. |
LI W, ZHENG M. Is it substantive innovation or strategic innovation?--Impact of macroeconomic policies on micro-firms' innovation. Economic Research Journal, 2016, 51(4): 60-73. | |
36 | 吴非,杜金岷,杨贤宏.财政R&D补贴、地方政府行为与企业创新.国际金融研究,2018(5):35-44. |
WU F, DU J, YANG X. Government financial R&D subsidy, local government behavior and enterprise innovation. Financial Theory & Policy, 2018(5): 35-44. | |
37 | BROWN J, FAZZARI S, PETERSEN B. Financing innovation and growth: Cash flow, external equity, and the 1990s R&D boom. Journal of Finance, 2009, 64(1): 151-185. |
38 | WU X, HUA Y, LU H. The influence mechanism of different cash flow availability on R&D investment: Evidence from China. Complexity, 2022: 1-14 |
39 | 徐明东,陈学彬.中国上市企业投资的资本成本敏感性估计.金融研究,2019(8):113-132. |
XU M, CHEN X. Estimating the sensitivity of listed firms' investments to the cost of capital in China. Journal of Financial Research, 2019(8): 113-132. |
[1] | Yiting LIN, Hong CHEN, Jiawen YANG, Huiming HUANG, Xiongbin LIN. Research on the spatial correlation between the high-quality basic education resources and housing prices to pursuing a balanced development: A case study of Guangzhou [J]. World Regional Studies, 2024, 33(6): 141-153. |
[2] | Yu ZOU, Yi LI. Spatio-temporal pattern and mechanism of housing price under the background of Guangzhou-Foshan urban integration [J]. World Regional Studies, 2024, 33(5): 136-149. |
[3] | Xiaobin MA, Xing ZHONG, Guolin HOU, Li LI, Jiangyan ZHANG. Multi-scale spatial characteristics of sharing accommodation prices and their influencing factors [J]. World Regional Studies, 2022, 31(4): 872-880. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||