World Regional Studies ›› 2024, Vol. 33 ›› Issue (4): 155-166.DOI: 10.3969/j.issn.1004-9479.2024.04.20220192
Received:
2022-03-22
Revised:
2022-07-09
Online:
2024-04-15
Published:
2024-04-24
Contact:
Jun HUANG
通讯作者:
黄俊
作者简介:
李晓梅(1974—),女,教授,博士生导师,研究方向为技术经济评价与创新管理,E-mail:75264255@qq.com。
基金资助:
Xiaomei LI, Jun HUANG. Evolution characteristics and convergence analysis of carbon emission efficiency of provincial logistics in China[J]. World Regional Studies, 2024, 33(4): 155-166.
李晓梅, 黄俊. 中国省域物流碳排放效率的演化特征及收敛性分析[J]. 世界地理研究, 2024, 33(4): 155-166.
物流业主要能耗燃料 | 原煤 | 原油 | 汽油 | 煤油 | 柴油 | 燃料油 | 液化石油气 | 天然气 |
---|---|---|---|---|---|---|---|---|
折算系数(kg标准煤/kg) | 0.714 | 1.429 | 1.471 | 1.471 | 1.457 | 1.429 | 1.714 | 1.330 |
碳排放系数(t碳/t标准煤) | 0.409 | 0.829 | 0.798 | 0.828 | 0.834 | 0.871 | 0.784 | 0.584 |
Tab.1 Carbon emission coefficient table
物流业主要能耗燃料 | 原煤 | 原油 | 汽油 | 煤油 | 柴油 | 燃料油 | 液化石油气 | 天然气 |
---|---|---|---|---|---|---|---|---|
折算系数(kg标准煤/kg) | 0.714 | 1.429 | 1.471 | 1.471 | 1.457 | 1.429 | 1.714 | 1.330 |
碳排放系数(t碳/t标准煤) | 0.409 | 0.829 | 0.798 | 0.828 | 0.834 | 0.871 | 0.784 | 0.584 |
年份 | Moran’s I | Z值 | 年份 | Moran’s I | Z值 |
---|---|---|---|---|---|
2006 | 0.365*** | 3.710 | 2013 | 0.305*** | 3.277 |
2007 | 0.383*** | 3.831 | 2014 | 0.317*** | 3.473 |
2008 | 0.369*** | 3.739 | 2015 | 0.305*** | 3.406 |
2009 | 0.382*** | 3.874 | 2016 | 0.335*** | 3.584 |
2010 | 0.388*** | 3.922 | 2017 | 0.295*** | 3.402 |
2011 | 0.363*** | 3.692 | 2018 | 0.288*** | 3.309 |
2012 | 0.328*** | 3.460 | 2019 | 0.284*** | 3.284 |
Tab.2 Global Moran's I index of logistics carbon emission efficiency from 2006 to 2019
年份 | Moran’s I | Z值 | 年份 | Moran’s I | Z值 |
---|---|---|---|---|---|
2006 | 0.365*** | 3.710 | 2013 | 0.305*** | 3.277 |
2007 | 0.383*** | 3.831 | 2014 | 0.317*** | 3.473 |
2008 | 0.369*** | 3.739 | 2015 | 0.305*** | 3.406 |
2009 | 0.382*** | 3.874 | 2016 | 0.335*** | 3.584 |
2010 | 0.388*** | 3.922 | 2017 | 0.295*** | 3.402 |
2011 | 0.363*** | 3.692 | 2018 | 0.288*** | 3.309 |
2012 | 0.328*** | 3.460 | 2019 | 0.284*** | 3.284 |
类型 | HH t+1 | LH t+1 | LL t+1 | HL t+1 | 类型 | 个数 | 比例 |
---|---|---|---|---|---|---|---|
HHt | Type 0(7,0.233) | Type Ⅱ(1,0.033) | Type Ⅰ(0,0.000) | Type Ⅲ(1,0.033) | Type 0 | 25 | 0.833 |
LHt | Type Ⅱ(0,0.000) | Type 0(5,0.167) | Type Ⅲ(0,0.000) | Type Ⅰ(0,0.000) | Type Ⅰ | 0 | 0.000 |
LLt | Type Ⅰ(0,0.000) | Type Ⅲ(2,0.067) | Type 0(12,0.400) | Type Ⅱ(0,0.000) | Type Ⅱ | 1 | 0.033 |
HLt | Type Ⅲ(1,0.033) | Type Ⅰ(0,0.000) | Type Ⅱ(0,0.000) | Type 0(1,0.033) | Type Ⅲ | 4 | 0.133 |
Tab. 3 Local Moran's I transition probability matrix from 2006 to 2019
类型 | HH t+1 | LH t+1 | LL t+1 | HL t+1 | 类型 | 个数 | 比例 |
---|---|---|---|---|---|---|---|
HHt | Type 0(7,0.233) | Type Ⅱ(1,0.033) | Type Ⅰ(0,0.000) | Type Ⅲ(1,0.033) | Type 0 | 25 | 0.833 |
LHt | Type Ⅱ(0,0.000) | Type 0(5,0.167) | Type Ⅲ(0,0.000) | Type Ⅰ(0,0.000) | Type Ⅰ | 0 | 0.000 |
LLt | Type Ⅰ(0,0.000) | Type Ⅲ(2,0.067) | Type 0(12,0.400) | Type Ⅱ(0,0.000) | Type Ⅱ | 1 | 0.033 |
HLt | Type Ⅲ(1,0.033) | Type Ⅰ(0,0.000) | Type Ⅱ(0,0.000) | Type 0(1,0.033) | Type Ⅲ | 4 | 0.133 |
年份 | 系数 | 年份 | 系数 |
---|---|---|---|
2006 | 0.434 | 2013 | 0.431 |
2007 | 0.440 | 2014 | 0.434 |
2008 | 0.440 | 2015 | 0.438 |
2009 | 0.446 | 2016 | 0.450 |
2010 | 0.441 | 2017 | 0.475 |
2011 | 0.440 | 2018 | 0.475 |
2012 | 0.440 | 2019 | 0.474 |
Tab. 4 σ coefficients of carbon emission efficiency of logistics from 2006 to 2019
年份 | 系数 | 年份 | 系数 |
---|---|---|---|
2006 | 0.434 | 2013 | 0.431 |
2007 | 0.440 | 2014 | 0.434 |
2008 | 0.440 | 2015 | 0.438 |
2009 | 0.446 | 2016 | 0.450 |
2010 | 0.441 | 2017 | 0.475 |
2011 | 0.440 | 2018 | 0.475 |
2012 | 0.440 | 2019 | 0.474 |
变量 | 2006—2009 | 2010—2013 | 2014—2019 | 2006—2019 |
---|---|---|---|---|
lnLCE | -0.844***(-15.65) | -0.317(-1.65) | -0.470***(-5.04) | -0.224***(-4.81) |
截距项 | -0.723***(-14.65) | -0.27(-1.55) | -0.497***(-5.50) | -0.187***(-4.32) |
F检验 | 4.580*** | 1.520* | 3.080*** | 1.860*** |
Hausman 检验 | 40.740*** | 3.120* | 56.080*** | 25.380*** |
模型设定 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
收敛性判断 | 收敛 | 不显著 | 收敛 | 收敛 |
收敛速度 | 1.858 | 0.635 | 0.254 |
Tab. 5 Absolute β convergence test about logistics carbon emission efficiency in China
变量 | 2006—2009 | 2010—2013 | 2014—2019 | 2006—2019 |
---|---|---|---|---|
lnLCE | -0.844***(-15.65) | -0.317(-1.65) | -0.470***(-5.04) | -0.224***(-4.81) |
截距项 | -0.723***(-14.65) | -0.27(-1.55) | -0.497***(-5.50) | -0.187***(-4.32) |
F检验 | 4.580*** | 1.520* | 3.080*** | 1.860*** |
Hausman 检验 | 40.740*** | 3.120* | 56.080*** | 25.380*** |
模型设定 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
收敛性判断 | 收敛 | 不显著 | 收敛 | 收敛 |
收敛速度 | 1.858 | 0.635 | 0.254 |
变量 | 东部 | 中部 | 西部 | 全国 |
---|---|---|---|---|
lnLCE | -0.241***(-4.85) | -0.231***(-4.62) | -0.197***(-4.53) | -0.284***(-5.59) |
K | 0.066(-4.85) | 0.017(0.32) | -0.075**(-2.08) | |
LEI | 0.007(1.38) | |||
GMC | 0.300(1.48) | |||
ME | -0.005(-0.96) | |||
LA | -0.038*(-1.99) | |||
ID | -0.447***(-3.83) | |||
截距项 | -0.184***(-4.47) | -0.189***(-4.36) | -0.194***(-5.50) | -0.123**(-2.58) |
F检验 | 1.880*** | 1.870*** | 1.860*** | 3.300*** |
Hausman 检验 | 25.970*** | 25.640*** | 27.540*** | 62.790*** |
模型设定 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
收敛性判断 | 收敛 | 收敛 | 收敛 | 收敛 |
收敛速度 | 0.276 | 0.263 | 0.219 | 0.334 |
Tab. 6 Conditions β convergence test about logistics carbon emission efficiency in China
变量 | 东部 | 中部 | 西部 | 全国 |
---|---|---|---|---|
lnLCE | -0.241***(-4.85) | -0.231***(-4.62) | -0.197***(-4.53) | -0.284***(-5.59) |
K | 0.066(-4.85) | 0.017(0.32) | -0.075**(-2.08) | |
LEI | 0.007(1.38) | |||
GMC | 0.300(1.48) | |||
ME | -0.005(-0.96) | |||
LA | -0.038*(-1.99) | |||
ID | -0.447***(-3.83) | |||
截距项 | -0.184***(-4.47) | -0.189***(-4.36) | -0.194***(-5.50) | -0.123**(-2.58) |
F检验 | 1.880*** | 1.870*** | 1.860*** | 3.300*** |
Hausman 检验 | 25.970*** | 25.640*** | 27.540*** | 62.790*** |
模型设定 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
收敛性判断 | 收敛 | 收敛 | 收敛 | 收敛 |
收敛速度 | 0.276 | 0.263 | 0.219 | 0.334 |
变量 | L-高 | L-中 | L-低 | T-高 | T-中 | T-低 |
---|---|---|---|---|---|---|
lnLCE | -0.022 | -0.217*** | -0.380*** | -0.534*** | -0.235*** | -0.056*** |
(-1.11) | (-3.96) | (-6.06) | (-6.99) | (-4.25) | (-4.26) | |
截距项 | -0.015 | -0.178 | -0.601*** | -0.514*** | -0.353** | -0.076 |
(-0.28) | (-1.47) | (-4.29) | (-4.29) | (-2.42) | (-2.43) | |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
F检验 | 3.400*** | 2.630*** | 6.090*** | 8.620*** | 2.280** | 2.540** |
Hausman 检验 | 24.070*** | 20.540*** | 38.180*** | 48.730*** | 17.100*** | 11.710* |
模型设定 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
收敛性判断 | 收敛 | 收敛 | 收敛 | 收敛 | 收敛 | 收敛 |
收敛速度 | 0.022 | 0.245 | 0.478 | 0.764 | 0.268 | 0.058 |
Tab. 7 Club convergence test about logistics carbon emission efficiency in China
变量 | L-高 | L-中 | L-低 | T-高 | T-中 | T-低 |
---|---|---|---|---|---|---|
lnLCE | -0.022 | -0.217*** | -0.380*** | -0.534*** | -0.235*** | -0.056*** |
(-1.11) | (-3.96) | (-6.06) | (-6.99) | (-4.25) | (-4.26) | |
截距项 | -0.015 | -0.178 | -0.601*** | -0.514*** | -0.353** | -0.076 |
(-0.28) | (-1.47) | (-4.29) | (-4.29) | (-2.42) | (-2.43) | |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
F检验 | 3.400*** | 2.630*** | 6.090*** | 8.620*** | 2.280** | 2.540** |
Hausman 检验 | 24.070*** | 20.540*** | 38.180*** | 48.730*** | 17.100*** | 11.710* |
模型设定 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
收敛性判断 | 收敛 | 收敛 | 收敛 | 收敛 | 收敛 | 收敛 |
收敛速度 | 0.022 | 0.245 | 0.478 | 0.764 | 0.268 | 0.058 |
1 | 丁俊发. 改革开放40年中国物流业发展与展望. 中国流通经济, 2018, 32(4): 3-17. |
DING J. The development of China's logistics industry during the past 40 years of reform and opening up and the outlook of that. China Business and Market, 2018, 32(4): 3-17. | |
2 | 刘丙泉, 程凯, 马占新. 城镇化对物流业碳排放变动影响研究. 中国人口·资源与环境, 2016, 26(3): 54-60. |
LIU B, CHENG K, MA Z. Research on the impacts of urbanization on logistics carbon emission changes. China Population, Resources and Environment, 2016, 26(3): 54-60. | |
3 | 李子晨. 未来5年实现碳效率提升35%. 国际商报, 2021-10-25(5). |
LI Z. Achieve 35% improvement in carbon efficiency in the next five years. International Business, 2021-10-25(5). | |
4 | ABUKHADER S, JÖNSON G. Logistics and the environment: Is it an established subject? International Journal of Logistics Research and Applications, 2004, 7(2): 137-149. |
5 | HEROLD D, LEE K. Carbon management in the logistics and transportation sector: An overview and new research directions. Carbon Management, 2017, 8(1): 79-97. |
6 | GUO X, WANG D. Analysis of the spatial relevance and influencing factors of carbon emissions in the logistics industry from China. Environmental Science and Pollution Research, 2022, 29(2): 2672-2684. |
7 | WANG J, LIM M, TSENG M, et al. Promoting low carbon agenda in the urban logistics network distribution system. Journal of Cleaner Production, 2019, 211: 146-160. |
8 | LIU Z, GUAN D, WEI W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 2015, 524(7565): 335-338. |
9 | GAO P, YUE S, CHEN H. Carbon emission efficiency of China's industry sectors: From the perspective of embodied carbon emissions. Journal of Cleaner Production, 2021, 283: 1-9. |
10 | 邵海琴, 王兆峰. 中国交通碳排放效率的空间关联网络结构及其影响因素. 中国人口·资源与环境, 2021, 31(4): 32-41. |
SHAO H, WANG Z. Spatial network structure of transportation carbon emissions efficiency in China and its influencing factors. China Population, Resources and Environment, 2021, 31(4): 32-41. | |
11 | 王凯, 张淑文, 甘畅, 等. 中国旅游业碳排放效率的空间网络结构及其效应研究. 地理科学, 2020, 40(3): 344-353. |
WANG K, ZHANG S, GAN C, et al. Spatial network structure of carbon emission efficiency of tourism industry and its effects in China. Scientia Geographica Sinica, 2020, 40(3): 344-353. | |
12 | DU Q, DENG Y, ZHOU J, et al. Spatial spillover effect of carbon emission efficiency in the construction industry of China. Environmental Science and Pollution Research, 2022, 29(2): 2466-2479. |
13 | WANG Q, HANG Y, SU B, et al. Contributions to sector-level carbon intensity change: An integrated decomposition analysis. Energy Economics, 2018, 70: 12-25. |
14 | ZHANG Z, QU J, ZENG J. A quantitative comparison and analysis on the assessment indicators of greenhouse gases emission. Journal of Geographical Sciences, 2008, 18(4): 387-399. |
15 | 程占红, 徐娇. 五台山景区酒店碳排放效率的典范对应分析. 地理研究, 2018, 37(3): 577-592. |
CHENG Z, XU J. Canonical correspondence analysis of hotels' carbon emission efficiency in Wutai Mountain scenic area. Geographical Research, 2018, 37(3): 577-592. | |
16 | ZHOU Z, LIU C, ZENG X, et al. Carbon emission performance evaluation and allocation in Chinese cities. Journal of Cleaner Production, 2018, 172: 1254-1272. |
17 | 李晨, 冯伟, 邵桂兰. 中国省域渔业全要素碳排放效率时空分异. 经济地理, 2018, 38(5): 179-187. |
LI C, FENG W, SHAO G. Spatio-temporal difference of total carbon emission efficiency of fishery in China. Economic Geography, 2018, 38(5): 179-187. | |
18 | 刘承良, 管明明. 低碳约束下中国物流业效率的空间演化及影响因素. 地理科学, 2017, 37(12): 1805-1814. |
LIU C, GUAN M. Spatial evolution of Chinese logistics industry efficiency under low carbon constraints and it's influencing factors. Scientia Geographica Sinica, 2017, 37(12): 1805-1814. | |
19 | WANG K, WU M, SUN Y, et al. Resource abundance, industrial structure, and regional carbon emissions efficiency in China. Resources Policy, 2019, 60: 203-214. |
20 | 王鑫静, 程钰. 城镇化对碳排放效率的影响机制研究——基于全球118个国家面板数据的实证分析. 世界地理研究, 2020, 29(3): 503-511. |
WANG X, CHENG Y. Research on the influencing mechanism of urbanization on carbon emission efficiency--Based on an empirical study of 118 countries. World Regional Studies, 2020, 29(3):503-511. | |
21 | 蔺雪芹, 边宇, 王岱. 京津冀地区工业碳排放效率时空演化特征及影响因素. 经济地理, 2021, 41(6): 187-195. |
LIN X, BIAN Y, WANG D. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emission efficiency in Beijing-Tianjin-Hebei region. Economic Geography, 2021, 41(6): 187-195. | |
22 | ZHU J, SUN H, ZHOU D, et al. Carbon emission efficiency of thermal power in different regions of China and spatial correlations. Mitigation and Adaptation Strategies for Global Change, 2020, 25(7): 1221-1242. |
23 | 王少剑,高爽,黄永源,等.基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测.地理学报,2020,75(6): 1316-1330. |
WANG S, GAO S, HUANG Y, et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM Model. Acta Geographica Sinica, 2020, 75(6): 1316-1330. | |
24 | 方叶林, 黄震方, 李经龙, 等. 中国省域旅游经济增长的时空跃迁及其趋同研究. 地理科学, 2018, 38(10): 1616-1623. |
FANG Y, HUANG Z, LI J, et al. Space-time transition of tourism economic growth and its convergence in Chinese mainland. Scientia Geographica Sinica, 2018, 38(10): 1616-1623. | |
25 | WEI Y, LI Y, WU M, et al. The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement. Energy Economics, 2019, 78: 365-378. |
26 | 贺三维, 张臻, 甘杨旸. 隐性经济视角下异质性环境规制对雾霾污染的时空效应. 经济地理, 2022, 42(4): 178-189. |
HE S, ZHANG Z, GAN Y. Spatio-temporal effect of environmental regulations on haze pollution from the perspective of implicit economy. Economic Geography, 2022, 42(4): 178-189. | |
27 | REY S. Spatial empirics for economic growth and convergence. Geographical Analysis, 2001, 33(3): 195-214. |
28 | REY S, JANIKAS M. STARS: Space-time analysis of regional systems. Geographical Analysis, 2006, 38(1): 67-86. |
29 | PÁEZ J. Progress in Spatial Analysis: Theory, Computation and Thematic Applications. Heidelberg: Springer, 2010. |
30 | 王许亮, 王恕立, 滕泽伟. 中国服务业碳生产率的空间收敛性研究. 中国人口·资源与环境, 2020, 30(2): 70-79. |
WANG X, WANG S, TENG Z. Research on spatial convergence of carbon productivity in China's service industry. China Population, Resources and Environment, 2020, 30(2): 70-79. | |
31 | YANG G, ZHANG F, ZHANG F, et al. Spatiotemporal changes in efficiency and influencing factors of China's industrial carbon emissions. Environmental Science and Pollution Research, 2021, 28(27): 36288-36302. |
32 | SHAN Y, GUAN D, LIU J, et al. Methodology and applications of city level CO2 emission accounts in China. Journal of Cleaner Production, 2017, 161: 1215-1225. |
33 | SHAN Y, GUAN D, ZHENG H, et al. China CO2 emission accounts 1997-2015. Scientific Data, 2018, 5(1): 1-14. |
34 | YANG J, TANG L, MI Z, et al. Carbon emissions performance in logistics at the city level. Journal of Cleaner Production, 2019, 231: 1258-1266. |
[1] | Jiyao YAN, Yuan ZHAO, Xiaoyan XIONG, Xin XU. Spatiotemporal evolution and influencing factors of domestic service industry development in China [J]. World Regional Studies, 2024, 33(3): 161-174. |
[2] | Huiqiang MA, Jiale LIU, Jianchao XI, Qing WANG. Spatio-temporal pattern and obstacle factor diagnosis of smart development of Beijing-Tianjin-Hebei Urban Agglomeration [J]. World Regional Studies, 2023, 32(6): 98-107. |
[3] | Xuan LING, Yong MA, Jie REN. Spatiotemporal evolution characteristics and mechanism analysis of tourism leisure industry in Sanya City [J]. World Regional Studies, 2023, 32(10): 134-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||