World Regional Studies ›› 2021, Vol. 30 ›› Issue (1): 114-124.DOI: 10.3969/j.issn.1004-9479.2021.01.2019344
Previous Articles Next Articles
Received:
2019-07-19
Revised:
2019-11-29
Online:
2021-01-09
Published:
2021-04-09
作者简介:
李倩(1995-),女,硕士研究生,研究方向为城市地理与城市规划,E-mail: qianjessielee@126.com
Qian LI, Lingyan QU. The network structure and influencing factors of the tourist flow within the city: The case of Shanghai[J]. World Regional Studies, 2021, 30(1): 114-124.
李倩, 曲凌雁. 城市旅游流网络结构特征及其影响因素[J]. 世界地理研究, 2021, 30(1): 114-124.
Add to citation manager EndNote|Ris|BibTeX
URL: https://sjdlyj.ecnu.edu.cn/EN/10.3969/j.issn.1004-9479.2021.01.2019344
类别 | 具体节点 |
---|---|
核心区 (9个) | 陆家嘴、外滩、南京路步行街、新天地、豫园、田子坊、迪士尼乐园、东方明珠、上海科技馆 |
边缘区 (54个) | 上海博物馆、静安寺、武康路、思南路、周公馆、孙中山故居纪念馆、迪士尼旗舰店、上海交通大学(徐汇校区)、中华艺术宫、多伦路、甜爱路、1933老场坊、鲁迅公园、外白渡桥、七宝老街、上海市历史博物馆、上海中心、思南公馆、迪士尼小镇、环球金融中心,等(仅列出前20个) |
Tab.1 "Core periphery" model of Shanghai tourist flow network
类别 | 具体节点 |
---|---|
核心区 (9个) | 陆家嘴、外滩、南京路步行街、新天地、豫园、田子坊、迪士尼乐园、东方明珠、上海科技馆 |
边缘区 (54个) | 上海博物馆、静安寺、武康路、思南路、周公馆、孙中山故居纪念馆、迪士尼旗舰店、上海交通大学(徐汇校区)、中华艺术宫、多伦路、甜爱路、1933老场坊、鲁迅公园、外白渡桥、七宝老街、上海市历史博物馆、上海中心、思南公馆、迪士尼小镇、环球金融中心,等(仅列出前20个) |
旅游节点 | 程度中心性 | 接近中心性 | 中间中心性 | ||
---|---|---|---|---|---|
外向 | 内向 | 外向 | 内向 | ||
外滩 | 27 | 24 | 6.51 | 7.99 | 1064.71 |
田子坊 | 18 | 18 | 6.42 | 7.89 | 541.19 |
豫园 | 17 | 18 | 6.41 | 7.87 | 291.81 |
南京路步行街 | 16 | 16 | 6.40 | 7.86 | 327.64 |
陆家嘴 | 14 | 7 | 6.35 | 7.69 | 172.00 |
迪士尼乐园 | 12 | 15 | 6.34 | 7.84 | 158.18 |
东方明珠 | 10 | 7 | 6.33 | 7.68 | 41.28 |
新天地 | 8 | 10 | 6.32 | 7.76 | 178.48 |
1933老场坊 | 6 | 5 | 6.29 | 7.69 | 205.59 |
武康路 | 5 | 8 | 6.28 | 7.74 | 267.00 |
… | … | … | … | … | … |
均值 | 3.65 | 3.65 | 5.43 | 6.28 | 64.02 |
Tab.2 Centrality analysis of tourism nodes in Shanghai tourist flow network
旅游节点 | 程度中心性 | 接近中心性 | 中间中心性 | ||
---|---|---|---|---|---|
外向 | 内向 | 外向 | 内向 | ||
外滩 | 27 | 24 | 6.51 | 7.99 | 1064.71 |
田子坊 | 18 | 18 | 6.42 | 7.89 | 541.19 |
豫园 | 17 | 18 | 6.41 | 7.87 | 291.81 |
南京路步行街 | 16 | 16 | 6.40 | 7.86 | 327.64 |
陆家嘴 | 14 | 7 | 6.35 | 7.69 | 172.00 |
迪士尼乐园 | 12 | 15 | 6.34 | 7.84 | 158.18 |
东方明珠 | 10 | 7 | 6.33 | 7.68 | 41.28 |
新天地 | 8 | 10 | 6.32 | 7.76 | 178.48 |
1933老场坊 | 6 | 5 | 6.29 | 7.69 | 205.59 |
武康路 | 5 | 8 | 6.28 | 7.74 | 267.00 |
… | … | … | … | … | … |
均值 | 3.65 | 3.65 | 5.43 | 6.28 | 64.02 |
旅游节点 | 结构洞 | ||
---|---|---|---|
效能大小 | 效率性 | 约束性 | |
外滩 | 30.23 | 0.86 | 0.12 |
田子坊 | 17.31 | 0.79 | 0.16 |
豫园 | 16.37 | 0.74 | 0.19 |
南京路步行街 | 15.67 | 0.75 | 0.22 |
迪士尼乐园 | 11.19 | 0.66 | 0.24 |
陆家嘴 | 11.10 | 0.69 | 0.26 |
武康路 | 8.69 | 0.87 | 0.27 |
新天地 | 8.14 | 0.68 | 0.30 |
东方明珠 | 5.94 | 0.54 | 0.35 |
思南路 | 4.44 | 0.63 | 0.46 |
Tab.3 The structural hole analysis of tourism nodes
旅游节点 | 结构洞 | ||
---|---|---|---|
效能大小 | 效率性 | 约束性 | |
外滩 | 30.23 | 0.86 | 0.12 |
田子坊 | 17.31 | 0.79 | 0.16 |
豫园 | 16.37 | 0.74 | 0.19 |
南京路步行街 | 15.67 | 0.75 | 0.22 |
迪士尼乐园 | 11.19 | 0.66 | 0.24 |
陆家嘴 | 11.10 | 0.69 | 0.26 |
武康路 | 8.69 | 0.87 | 0.27 |
新天地 | 8.14 | 0.68 | 0.30 |
东方明珠 | 5.94 | 0.54 | 0.35 |
思南路 | 4.44 | 0.63 | 0.46 |
子群 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 0.338 | 0.107 | 0.168 | 0.059 | 0.024 | 0.042 | 0.039 | 0 |
2 | 0.123 | 0.009 | 0.013 | 0 | 0 | 0.013 | 0.01 | 0 |
3 | 0.118 | 0.013 | 0 | 0.029 | 0 | 0 | 0.016 | 0 |
4 | 0.118 | 0 | 0 | 0.1 | 0.12 | 0 | 0 | 0 |
5 | 0 | 0 | 0.114 | 0.12 | 0.1 | 0 | 0.022 | 0 |
6 | 0.008 | 0.026 | 0 | 0.029 | 0 | 0.119 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0.111 | 0 |
Tab.4 The density matrix of the cohesive subgroups
子群 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 0.338 | 0.107 | 0.168 | 0.059 | 0.024 | 0.042 | 0.039 | 0 |
2 | 0.123 | 0.009 | 0.013 | 0 | 0 | 0.013 | 0.01 | 0 |
3 | 0.118 | 0.013 | 0 | 0.029 | 0 | 0 | 0.016 | 0 |
4 | 0.118 | 0 | 0 | 0.1 | 0.12 | 0 | 0 | 0 |
5 | 0 | 0 | 0.114 | 0.12 | 0.1 | 0 | 0.022 | 0 |
6 | 0.008 | 0.026 | 0 | 0.029 | 0 | 0.119 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0.111 | 0 |
变量名称 | 平均值 | 标准差 | |
---|---|---|---|
被解释变量 | 效能大小 | 3.44 | 5.07 |
交通便捷度(缓冲区内地铁站个数) | 2.51 | 1.54 | |
旅游接待能力(缓冲区内三星级以上酒店个数) | 12.79 | 9.41 | |
解释变量 | 旅游资源禀赋(缓冲区内旅游节点个数) | 5.79 | 3.99 |
商业便捷度(缓冲区内购物中心个数) | 7.11 | 5.26 | |
旅游节点知名度(百度指数) | 982.13 | 1587.22 | |
是否为核心节点 | 0.14 | 0.35 | |
距离最近的核心节点的距离(米) | 3535.14 | 6934.82 |
Tab.5 Descriptive statistics of variables’ original data
变量名称 | 平均值 | 标准差 | |
---|---|---|---|
被解释变量 | 效能大小 | 3.44 | 5.07 |
交通便捷度(缓冲区内地铁站个数) | 2.51 | 1.54 | |
旅游接待能力(缓冲区内三星级以上酒店个数) | 12.79 | 9.41 | |
解释变量 | 旅游资源禀赋(缓冲区内旅游节点个数) | 5.79 | 3.99 |
商业便捷度(缓冲区内购物中心个数) | 7.11 | 5.26 | |
旅游节点知名度(百度指数) | 982.13 | 1587.22 | |
是否为核心节点 | 0.14 | 0.35 | |
距离最近的核心节点的距离(米) | 3535.14 | 6934.82 |
变量 | (1)以是否为核心节点衡量核心节点的影响 | (2)以距离最近的核心节点的距离衡量核心节点的影响 |
---|---|---|
交通便捷度 | 0.482*** (0.169) | 0.330* (0.192) |
旅游接待能力 | 0.079 (0.110) | 0.076 (0.126) |
旅游资源禀赋 | -0.116 (0.110) | -0.287** (0.129) |
商业便捷度 | -0.013 (0.089) | 0.030 (0.101) |
旅游节点知名度 | 0.049** (0.024) | 0.053* (0.028) |
核心节点的影响力 | 1.906*** (0.213) | -0.219*** (0.031) |
常数项 | -0.351 (0.290) | 1.609*** (0.456) |
0.664 | 0.564 | |
样本数 | 63 | 63 |
Tab.6 Regression result
变量 | (1)以是否为核心节点衡量核心节点的影响 | (2)以距离最近的核心节点的距离衡量核心节点的影响 |
---|---|---|
交通便捷度 | 0.482*** (0.169) | 0.330* (0.192) |
旅游接待能力 | 0.079 (0.110) | 0.076 (0.126) |
旅游资源禀赋 | -0.116 (0.110) | -0.287** (0.129) |
商业便捷度 | -0.013 (0.089) | 0.030 (0.101) |
旅游节点知名度 | 0.049** (0.024) | 0.053* (0.028) |
核心节点的影响力 | 1.906*** (0.213) | -0.219*** (0.031) |
常数项 | -0.351 (0.290) | 1.609*** (0.456) |
0.664 | 0.564 | |
样本数 | 63 | 63 |
1 | Onder I, Koerbitz W, Hubmann-Haidvogel A. Tracing tourists by their digital footprints: The case of Austria. Journal of Travel Research, 2014, 55(5): 566-573 |
2 | 阮文奇,张舒宁,郑向敏. 中国游客赴泰旅游流网络结构及其形成机理研究.世界地理研究,2018,27(4):34-44. |
Ruan W, Zhang S, Zheng X. A study on the network structure of Chinese tourists' traveling to Thailand and its formation mechanism. World Regional Studies, 2018,27(4):34-44 | |
3 | 吴中堂, 刘建徽, 袁俊. 大陆居民赴台湾自由行旅游流网络分析及演化研究. 旅游学刊, 2016, 31(10):113-121. |
Wu Z, Liu J, Yuan J. Network analysis and evolutionary studies based on tourist flows of Mainland residents' self-service traveling in Taiwan. Tourism Tribune, 2016, 31(10):113-121. | |
4 | 徐敏,黄震方,曹芳东,等.基于在线预订数据分析的旅游流网络结构特征与影响因素——以长三角地区为例.经济地理, 2018,38(06):193-202. |
Xu M, Huang Z, Cao F, et al. The network structure features and influence factors of tourism flows based on online data analysis—Taking the Yangtze River Delta Region as an example. Economic Geography, 2018,38(06):193-202. | |
5 | 廖继武.核心-边缘结构对旅游客流时间分布的影响——以广东肇庆市为例.地域研究与开发,2019,38(1):100-105. |
Liao J. Impact on the travel time of tourist flow by the core-peripheral structure. Areal Research and Development,2019,38(1):100-105. | |
6 | 李磊,陆林,穆成林,等.高铁网络化时代典型旅游城市旅游流空间结构演化——以黄山市为例.经济地理,2019,39(05):207-216+225. |
Li L, Lu L, Mu C, et al. Spatial structure evolution of tourist flow in typical tourist cities in the period of high-speed rail networking: A case study of Huangshan City. Economic Geography, 2019,39(05):207-216+225. | |
7 | 张妍妍,李君轶,杨敏.基于旅游数字足迹的西安旅游流网络结构研究.人文地理,2014,29(4):111-118. |
Zhang Y, Li J,Yang M. The tourism flow network structure of Xi' an based on tourism digital footprint. Human Geography, 2014,29(4):111-118. | |
8 | 朱尧,邹永广,陈璐. 基于UGC数据的国内都市旅游流时空特征分析——以上海为例. 旅游论坛,2019,12(4):33-41. |
Zhu Y, Zou Y, Chen L. Analysis of spatial characteristics of urban tourism flow based on UGC data - Take Shanghai as an example. Tourism Forum, 2019,12(4):33-41. | |
9 | 王录仓, 严翠霞, 李巍. 基于新浪微博大数据的旅游流时空特征研究——以兰州市为例. 旅游学刊, 2017, 32(5):94-105. |
Wang L, Yan C, Li W. Research on spatial-temporal characteristics of tourist flow based on Sina Microblog LBS data: an case study of Lanzhou. Tourism Tribune, 2017, 32(5):94-105. | |
10 | 戴文,丁蕾,吴晨,刘培学,张义杰.基于大数据的旅游流时空分布特征研究——以南京市为例.现代城市研究,2019(02):38-44. |
Dai Wen, Ding Lei, Wu Chen, et al. Big data based spatial-temporal distribution pattern of tourism flow: A case study of Nanjing. Modern Urban Research, 2019(02):38-44. | |
11 | 蔚海燕, 戴泽钒, 许鑫,等. 上海迪士尼对上海旅游流网络的影响研究——基于驴妈妈游客数字足迹的视角. 旅游学刊, 2018, 33(4):33-45. |
Yu H, Dai Z, Xu X, et al. The impact of Shanghai Disneyland on Shanghai's tourist flow network: From the perspective of tourists'digital footprints on the Lvmama Website. Tourism Tribune, 2018, 33(4):33-45. | |
12 | Girardin F, Calabrese F, Fiore F D, et al. Digital footprinting: Uncovering tourists with user-generated content. IEEE Pervasive Computing, 2008, 7(4):36-43. |
13 | Zheng Y T, Zha Z J, Chua T S. Mining travel patterns from geotagged photos. Acm Transactions on Intelligent Systems & Technology, 2012, 3(3):1-18. |
14 | Salasolmedo M H, Garciapalomares J C, Gutierrez J. Tourists' digital footprint in cities: comparing big data sources. Tourism Management, 2017, 66:13-25. |
15 | 杨兴柱, 顾朝林, 王群. 南京市旅游流网络结构构建. 地理学报, 2007, 62(6):609-620. |
Yang X, Gu C, Wang Q. Urban tourism flow network structure construction in Nanjing. Acta Geographica Sinica, 2007, 62(6):609-620. | |
16 | 申通远, 朱玉杰. 创新合作社会网络中企业中心性特征的影响因素.技术经济,2018,37(11):22-32+80. |
Sheng T,Zhu Y. Influencing factors of firm's centrality in innovation coordination network.Technology Economics,2018,37(11):22-32+80. | |
17 | Maine E M, Vining S A R. The role of clustering in the growth of new technology-based firms. Small Business Economics, 2010, 34(2):127-146. |
18 | Chhetri A, Chhetri P, Arrowsmith C, et al. Modelling tourism and hospitality employment clusters: A spatial econometric approach. Tourism Geographies, 2016, 19(3):1-27. |
19 | Peiro-Signes A, Segarra-Ona M D V, L Miret-Pastoret al. The effect of tourism clusters on U.S. Hotel Performance. Cornell Hospitality Quarterly, 2015, 56(2):155-167. |
20 | 马远,徐俐俐."一带一路"沿线国家天然气贸易网络结构及影响因素.世界经济研究,2017(03):109-122. |
Ma Y, Xu L. Network structure and influence factors of gas trade about the countries along "the Belt and Road". World Economy Studies,2017(03):109-122. | |
21 | 查晓莉,陆林.基于旅游数字足迹的访沪国内旅游者时空行为研究.旅游研究,2017,9(04):63-73. |
Zha X, Lu L. Study of the spatial-temporal behavior of domestic tourists in Shanghai, China based on tourism digital footprint. Tourism Research, 2017,9(04):63-73. | |
22 | 郭雅婷,贾铁飞.基于旅游数字足迹的访沪国内游客时空行为特征研究.资源开发与市场,2017,33(09):1147-1152. |
Guo Y, Jia T. Study on Temporal-spatial behavior characteristics of domestic tourists in shanghai based on tourists' digital footprints. Resource Development & Market, 2017,33(09):1147-1152. | |
23 | 张鲜鲜,李婧晗,左颖,等.基于数字足迹的游客时空行为特征分析——以南京市为例.经济地理,2018,38(12):226-233. |
Zhang X, Li J, Zuo Y, et al. Study on spatial-temporal characteristics of tourist behavior based on digital footprints: Taking Nanjing for example. Economic Geography, 2018,38(12):226-233. | |
24 | 金准.产品结构变动对旅游流空间结构的优化效应分析———以杭州为例. 旅游学刊,2006,21(7) : 42-47. |
Jin Z. An analysis of optimization effects of the changes in product spatial structure of tourist flow: A case study on Hangzhou. Tourism Tribune,2006,21(7) : 42-47. | |
25 | 汪秉宏,韩筱璞.人类行为的动力学与统计力学研究.物理,2010,39(01):28-37. |
Wang B, Han X. The dynamics and statistical mechanics of human behaviors. Physics, 2010,39(01):28-37. | |
26 | 冯学刚,黄成林. 旅游地理学. 北京:高等教育出版社, 2006. |
Feng X, Huang C. Tourism geograhy. Beijing: Higher Education Press, 2006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||