World Regional Studies ›› 2024, Vol. 33 ›› Issue (1): 149-162.DOI: 10.3969/j.issn.1004-9479.2024.01.20220327
Wenzhu TU(), Wenwu ZHAO(), Caichun YIN, Jingyi DING
Received:
2022-05-06
Revised:
2022-10-12
Online:
2024-01-15
Published:
2024-01-29
Contact:
Wenwu ZHAO
通讯作者:
赵文武
作者简介:
屠文竹(1999—),女,博士研究生,研究方向为人地系统与可持续发展,E-mail:tuwenzhu1022@163.com。
基金资助:
Wenzhu TU, Wenwu ZHAO, Caichun YIN, Jingyi DING. Development process and prospect of sustainable development research supported by earth observation based on bibliometric analysis[J]. World Regional Studies, 2024, 33(1): 149-162.
屠文竹, 赵文武, 尹彩春, 丁婧祎. 基于文献计量的对地观测技术支撑可持续发展研究进展与展望[J]. 世界地理研究, 2024, 33(1): 149-162.
高频主题词 | 频次 | 中心度 | 高频主题词 | 频次 | 中心度 |
---|---|---|---|---|---|
地理信息系统 | 1 805 | 0.11 | 空间分析 | 227 | 0.02 |
可持续发展(sustainable development) | 1 544 | 0.02 | 发展中国家(developing countries) | 206 | 0.07 |
土地利用/土地覆被变化 | 739 | 0.04 | 土壤侵蚀(soil erosion) | 200 | 0.01 |
遥感 | 643 | 0.04 | 城市规划 | 192 | 0.01 |
可持续管理 | 522 | 0.03 | 空间格局(spatial pattern) | 190 | 0.04 |
城市地区 | 436 | 0.02 | 总面积(total area) | 162 | 0.03 |
空间分布(spatial distribution) | 432 | 0.04 | 水质(water quality) | 157 | 0.02 |
气候变化 | 419 | 0.03 | 环境可持续性 | 152 | 0.02 |
人类活动 | 374 | 0.05 | 经济发展 | 152 | 0.02 |
决策 | 333 | 0.03 | 城市发展 | 145 | 0.01 |
自然资源 | 327 | 0.04 | 农业用地 | 144 | 0.02 |
水资源 | 314 | 0.04 | 对地观测(earth observation) | 143 | 0.02 |
城区扩张 | 259 | 0.02 | 决策支持系统 | 140 | 0.06 |
生态系统服务 | 257 | 0.02 | 主要目标(main objective) | 137 | 0.02 |
卫星影像(satellite image) | 230 | 0.04 | 沿海地区 | 135 | 0.02 |
Tab.1 High-frequency terms in sustainable development research supported by earth observation (Top 30)
高频主题词 | 频次 | 中心度 | 高频主题词 | 频次 | 中心度 |
---|---|---|---|---|---|
地理信息系统 | 1 805 | 0.11 | 空间分析 | 227 | 0.02 |
可持续发展(sustainable development) | 1 544 | 0.02 | 发展中国家(developing countries) | 206 | 0.07 |
土地利用/土地覆被变化 | 739 | 0.04 | 土壤侵蚀(soil erosion) | 200 | 0.01 |
遥感 | 643 | 0.04 | 城市规划 | 192 | 0.01 |
可持续管理 | 522 | 0.03 | 空间格局(spatial pattern) | 190 | 0.04 |
城市地区 | 436 | 0.02 | 总面积(total area) | 162 | 0.03 |
空间分布(spatial distribution) | 432 | 0.04 | 水质(water quality) | 157 | 0.02 |
气候变化 | 419 | 0.03 | 环境可持续性 | 152 | 0.02 |
人类活动 | 374 | 0.05 | 经济发展 | 152 | 0.02 |
决策 | 333 | 0.03 | 城市发展 | 145 | 0.01 |
自然资源 | 327 | 0.04 | 农业用地 | 144 | 0.02 |
水资源 | 314 | 0.04 | 对地观测(earth observation) | 143 | 0.02 |
城区扩张 | 259 | 0.02 | 决策支持系统 | 140 | 0.06 |
生态系统服务 | 257 | 0.02 | 主要目标(main objective) | 137 | 0.02 |
卫星影像(satellite image) | 230 | 0.04 | 沿海地区 | 135 | 0.02 |
突现时段 | 强度 | 主题词 | 突现时段 | 强度 | 主题词 |
---|---|---|---|---|---|
1995—2004 | 22.48 | 地理信息系统 | 2016—2018 | 7.74 | 文化遗产 |
1997—2007 | 21.26 | 决策支持系统 | 2017—2019 | 7.83 | 摄氏度(degree centigrade) |
1997—2008 | 8.88 | 野外试验(field experiment) | 2017—2021 | 10.22 | 分类精度(classification accuracy) |
1998—2005 | 9.14 | 环境管理(environmental management) | 2018—2021 | 31.03 | 可持续发展目标 |
1998—2006 | 11.96 | 自然资源 | 10.06 | 土地利用/土地覆被变化 | |
2002—2007 | 17.88 | 可持续发展 | 9.71 | 驱动因素(driving factor) | |
2002—2009 | 14.86 | 卫星影像 | 9.37 | 支持向量机 | |
2005—2011 | 8.53 | 海岸带(coastal zone) | 8.84 | 神经网络 | |
2005—2015 | 8.04 | 风险评估(risk assessment) | 8.73 | 可持续城市(sustainable cities) | |
2007—2011 | 7.98 | 土壤性质(soil property) | 2019—2021 | 13.85 | 归一化差异植被指数(NDVI) |
2011—2013 | 8.01 | 变化检测(change detection) | 13.55 | 随机森林 | |
2015—2016 | 10.49 | 可持续方式 | 9.82 | 重要意义(great significance) | |
8.41 | 主要来源(main source) | 8.21 | 影响因素(influencing factor) | ||
2015—2018 | 11.83 | 适生立地 | 7.79 | 机器学习 | |
2016—2018 | 8.00 | 多准则分析 | 7.78 | 稻田(paddy field) |
Tab.2 Terms with the strongest citation bursts in sustainable development research supported by earth observation (Top 30)
突现时段 | 强度 | 主题词 | 突现时段 | 强度 | 主题词 |
---|---|---|---|---|---|
1995—2004 | 22.48 | 地理信息系统 | 2016—2018 | 7.74 | 文化遗产 |
1997—2007 | 21.26 | 决策支持系统 | 2017—2019 | 7.83 | 摄氏度(degree centigrade) |
1997—2008 | 8.88 | 野外试验(field experiment) | 2017—2021 | 10.22 | 分类精度(classification accuracy) |
1998—2005 | 9.14 | 环境管理(environmental management) | 2018—2021 | 31.03 | 可持续发展目标 |
1998—2006 | 11.96 | 自然资源 | 10.06 | 土地利用/土地覆被变化 | |
2002—2007 | 17.88 | 可持续发展 | 9.71 | 驱动因素(driving factor) | |
2002—2009 | 14.86 | 卫星影像 | 9.37 | 支持向量机 | |
2005—2011 | 8.53 | 海岸带(coastal zone) | 8.84 | 神经网络 | |
2005—2015 | 8.04 | 风险评估(risk assessment) | 8.73 | 可持续城市(sustainable cities) | |
2007—2011 | 7.98 | 土壤性质(soil property) | 2019—2021 | 13.85 | 归一化差异植被指数(NDVI) |
2011—2013 | 8.01 | 变化检测(change detection) | 13.55 | 随机森林 | |
2015—2016 | 10.49 | 可持续方式 | 9.82 | 重要意义(great significance) | |
8.41 | 主要来源(main source) | 8.21 | 影响因素(influencing factor) | ||
2015—2018 | 11.83 | 适生立地 | 7.79 | 机器学习 | |
2016—2018 | 8.00 | 多准则分析 | 7.78 | 稻田(paddy field) |
1 | BRUNDTLAND G H. World commission on environment and development. Environmental Policy & Law, 1985, 14(1): 26-30. |
2 | 廖小罕. 中国对地观测20年科技进步和发展. 遥感学报, 2021, 25(1): 267-275. |
LIAO X. Scientific and technological progress and development prospect of the earth observation in China in the past 20 years. National Remote Sensing Bulletin, 2021, 25(1): 267-275. | |
3 | 姜景山.中国对地观测技术发展现状及未来发展的若干思考.中国工程科学, 2006(11):19-24. |
JIANG J.Considerations on China's earth observation technology-Current activities and future directions.Strategic Study of CAE,2006 (11): 19-24. | |
4 | 董金玮, 陈玉, 周岩, 等. 地球大数据支撑可持续发展目标协同与权衡研究:进展与展望. 中国科学院院刊, 2021, 36(8): 950-962. |
DONG J, CHEN Y, ZHOU Y, et al. Big earth data supports synergies and trade-offs of sustainable development goals: progress and prospect. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 950-962. | |
5 | PETROPOULOS G P, SRIVASTAVA P K, PILES M, et al. Earth observation-Based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management. Sustainability, 2018, 10(1): 181. |
6 | SONG Y, WU P. Earth observation for sustainable infrastructure: A review. Remote Sensing, 2021, 13(8): 1528. |
7 | PRAKASH M, RAMAGE S, KAVVADA A, et al. Open earth observations for sustainable urban development. Remote Sensing, 2020, 12(10): 1646. |
8 | REDDY C S. Remote sensing of biodiversity: What to measure and monitor from space to species? Biodiversity and Conservation, 2021,30(10): 2617-2631. |
9 | CORD A F, BRAUMAN K A, CHAPLIN-KRAMER R, et al. Priorities to advance monitoring of ecosystem services using earth observation. Trends in Ecology & Evolution, 2017, 32(6): 416-428. |
10 | 郑文晖. 文献计量法与内容分析法的比较研究. 情报杂志, 2006(5): 31-33. |
ZHENG W. Comparative research on bibliometric method and content analysis method. Journal of Intelligence, 2006(5): 31-33. | |
11 | 赵文武, 侯焱臻, 刘焱序. 人地系统耦合与可持续发展:框架与进展. 科技导报, 2020, 38(13): 25-31. |
ZHAO W, HOU Y, LIU Y. Human-natural coupling system for sustainable development: Framework and progress. Science & Technology Review, 2020, 38(13): 25-31. | |
12 | 杨洋,王颖,何春阳,等.21世纪以来城市蔓延国际研究进展与趋势-基于CiteSpace的知识图谱分析.世界地理研究, 2020,29(4):750-761. |
YANG Y, WANG Y, HE C,et al. International research progress and trend of urban sprawl since the 21st century-An analysis of knowledge mapping based on CiteSpace. World Regional Studies, 2020, 29(4): 750-761. | |
13 | 李杰,陈超美.CiteSpace科技文本挖掘及可视化.北京: 首都经济贸易大学出版社, 2016. |
LI J, CHEN C. CiteSpace: Text Mining and Visualization in Scientific Literature. Beijing: Capital Economics and Trade University Press, 2016. | |
14 | 赵文武, 王亚萍. 1981-2015年我国大陆地区景观生态学研究文献分析. 生态学报, 2016, 36(23): 7886-7896. |
ZHAO W, WANG Y. Literature analysis of landscape ecology studies in mainland China from 1981 to 2015. Acta Ecologica Sinica, 2016, 36(23): 7886-7896. | |
15 | 褚庆全, 李林. 地理信息系统(GIS)在农业上的应用及其发展趋势. 中国农业科技导报, 2003, 5(1): 22-26. |
CHU Q, LI L. The developing trend and application of GIS on agriculture. Review of China Agricultural Science and Technology, 2003, 5(1): 22-26. | |
16 | 张军泽, 王帅, 赵文武, 等. 可持续发展目标关系研究进展. 生态学报, 2019, 39(22): 8327-8337. |
ZHANG J, WANG S, ZHAO W, et al. Research progress on the interlinkages between the 17 Sustainable Development Goals and their implication for domestic study. Acta Ecologica Sinica, 2019, 39(22): 8327-8337. | |
17 | Group on Earth Observations. Earth Observation in Support of the 2030 Agenda for Sustainable Development. Geneva: GEO, 2017. |
18 | MCCABE M F, RODELL M, ALSDORF D E, et al. The future of earth observation in hydrology. Hydrology and Earth System Sciences Discussions, 2017(21): 1-55. |
19 | SHEFFIELD J, WOOD E F, PAN M, et al. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data - poor regions. Water Resources Research, 2018, 54(12): 9724-9758. |
20 | HAKIMDAVAR R, HUBBARD A, POLICELLI F, et al. Monitoring water-related ecosystems with earth observation data in support of Sustainable Development Goal (SDG) 6 reporting. Remote Sensing, 2020, 12(10): 1634. |
21 | WANG S L, LI J S, ZHANG B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 2018, 217: 444-460. |
22 | WANG S, LI J, ZHANG B, et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sensing of Environment, 2020, 247: 111949. |
23 | MUKHERJEE A, DUTTAGUPTA S, CHATTOPADHYAY S, et al. Impact of sanitation and socio-economy on groundwater fecal pollution and human health towards achieving sustainable development goals across India from ground-observations and satellite-derived nightlight. Scientific Reports, 2019, 9: 18576. |
24 | GUZINSKI R, KASS S, HUBER S, et al. Enabling the use of earth observation data for integrated water resource management in Africa with the water observation and information system. Remote Sensing, 2014, 6(8): 7819-7839. |
25 | AMANI M, MAHDAVI S, AFSHAR M, et al. Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sensing, 2019, 11(7): 842. |
26 | MAO D, WANG Z, DU B,et al.National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images.ISPRS Journal of Photogrammetry and Remote Sensing,2020,164: 11-25. |
27 | 高峻, 张中浩, 李巍岳, 等. 地球大数据支持下的城市可持续发展评估:指标、数据与方法. 中国科学院院刊, 2021, 36(8): 940-949. |
GAO J, ZHANG Z, LI W, et al. Urban sustainable development evaluation with big earth data: Data, indicators, and methods. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 940-949. | |
28 | TAUBENBÖCK H, KRAFF N J, WURM M. The morphology of the Arrival City—A global categorization based on literature surveys and remotely sensed data. Applied Geography, 2018, 92: 150-167. |
29 | Improving Health in Slums Collaborative. A protocol for a multi-site, spatially-referenced household survey in slum settings: methods for access, sampling frame construction, sampling, and field data collection. BMC Medical Research Methodology, 2019, 19(1): 109. |
30 | LIU X P, HU G H, CHEN Y M, et al. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 2018, 209: 227-239. |
31 | GONG P, LIU H, ZHANG M N, et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 2019, 64(3): 370-373. |
32 | KUANG W H, ZHANG S, Li X Y, et al. A 30 m resolution dataset of China's urban impervious surface area and green space, 2000–2018. Earth System Science Data, 2021, 13(1): 63-82. |
33 | Lo C P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogrammetric Engineering and Remote Sensing, 2001, 67(9): 1037-1048. |
34 | YUAN Y, SMITH R M, LIMP W F. Remodeling census population with spatial information from LandSat TM imagery. Computers Environment and Urban Systems, 1997, 21(3-4): 245-258. |
35 | LO C P. Automated population and dwelling unit estimation from high-resolution satellite images: a GIS approach. International Journal of Remote Sensing, 1995, 16(1): 17-34. |
36 | LIU X, CLARKE K, HEROLD M. Population density and image texture: A comparison study. Photogrammetric Engineering and Remote Sensing, 2006, 72(2): 187-196. |
37 | WANG Y, HUANG C, FENG Y, et al. Using earth observation for monitoring SDG 11.3.1-ratio of land consumption rate to population growth rate in mainland China. Remote Sensing, 2020, 12(3): 357. |
38 | DOAN T, GUO X L. Understanding bison carrying capacity estimation in northern Great Plains using remote sensing and GIS. Canadian Journal of Remote Sensing, 2019, 45(2): 139-162. |
39 | SOUTO H, GOMES N, CARVALHO R. Development of a GIS for the "celebration of coastal culture". Journal of Coastal Conservation, 2012, 16(4): 431-437. |
40 | TAPETE D, CIGNA F. InSAR data for geohazard assessment in UNESCO World Heritage sites: state-of-the-art and perspectives in the Copernicus era. International Journal of Applied Earth Observation and Geoinformation, 2017, 63: 24-32. |
41 | TACHE A V, SANDU I, POPESCU O C, et al. UAV solutions for the protection and management of cultural heritage. Case Study: Halmyris archaeological site. International Journal of Conservation Science, 2018, 9(4): 795-804. |
42 | CHENG H. Future earth and sustainable developments. The Innovation, 2020, 1(3): 100055. |
43 | TSATSARIS A, KALOGEROPOULOS K, STATHOPOULOS N, et al. Geoinformation technologies in support of environmental hazards monitoring under climate change: An extensive review. International Journal of Geo-Information, 2021, 10(2): 94. |
44 | KARAVITIS C A, D.E TSESMELIS, SKONDRAS N A, et al. Linking drought characteristics to impacts on a spatial and temporal scale. Water Policy, 2014, 16(6): 1172-1197. |
45 | TSESMELIS D E, KARAVITIS C A, OIKONOMOU P D, et al. Assessment of the vulnerability to drought and desertification characteristics using the standardized drought vulnerability index (SDVI) and the environmentally sensitive areas index (ESAI). Resources, 2019, 8(1): 6. |
46 | SWATHANDRAN S, ASLAM M. Assessing the role of SWIR band in detecting agricultural crop stress: A case study of Raichur district, Karnataka, India. Environmental Monitoring and Assessment, 2019, 191(7): 442. |
47 | IPCC. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Switzerland: IPCC, 2018. |
48 | MAGESH N S, CHANDRASEKAR N, SOUNDRANAYAGAM J P. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 2012, 3(2): 189-196. |
49 | AVTAR R, AGGARWAL R, KHARRAZI A, et al. Utilizing geospatial information to implement SDGs and monitor their Progress. Environmental Monitoring and Assessment, 2020, 192(1): 1-35. |
50 | WHYTE A, FREDINOS K, PETROPOULOS G P. A new synergistic approach for monitoring wetlands using Sentinels -1 and 2 data with object-based machine learning algorithms. Environmental Modelling & Software, 2018, 104: 40-54. |
51 | COOPER J, PILKEY O H. Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule. Global and Planetary Change, 2004, 43(3/4): 157-171. |
52 | LORENZO M, VOUSDOUKAS M I, JEAN-FRANCOIS P, et al. Global long-term observations of coastal erosion and accretion. Scientific Reports, 2018, 8(1): 12876. |
53 | VOS K, HARLEY M D, SPLINTER K D, et al. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering, 2019, 150: 160-174. |
54 | MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats. Nature, 2019, 565: 222-225. |
55 | MAHRAD B E, NEWTON A, ICELY J D, et al. Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: A review. Remote Sensing, 2020, 12(14): 2313. |
56 | MCCARTHY M J, COLNA K E, EL-MEZAYEN M M, et al. Satellite remote sensing for coastal management: A review of successful applications. Environmental Management, 2017, 60(50): 323-339. |
57 | ELVIDGE C D, GHOSH T, BAUGH K, et al. Rating the effectiveness of fishery closures with visible infrared imaging radiometer suite boat detection data. Frontiers in Marine Science, 2018, 5: 132. |
58 | SINGH S, PARIDA B. Satellite-based identification of aquaculture farming over coastal areas around Bhitarkanika, Odisha using a neural network method. Proceedings, 2018, 2: 331. |
59 | JETZ W, CAVENDER-BARES J, PAVLICK R, et al. Monitoring plant functional diversity from space. Nature Plants, 2016, 2(3): 16024. |
60 | PÜTZ S, GROENEVELD J, HENLE K, et al. Long-term carbon loss in fragmented Neotropical forests. Nature Communications, 2014, 5: 5037. |
61 | GUIMARES N, PÁDUA L, MARQUES P, et al. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sensing, 2020, 12(6): 1046. |
62 | GUPTA R, SHARMA L K. The process-based forest growth model 3-PG for use in forest management: A review. Ecological Modelling, 2019, 397: 55-73. |
63 | 李晓松, 卢琦, 贾晓霞. 地球大数据促进土地退化零增长目标实现:实践与展望. 中国科学院院刊, 2021, 36(8): 896-903. |
LI X, LU Q, JIA X. Harnessing big earth data to facilitate land degradation neutrality goals-practices and prospects. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 896-903. | |
64 | SAFRIEL U N. The Assessment of Global Trends in Land Degradation//SIVAKUMAR M, NDIANG'UI N. Climate and Land Degradation. Berlin Heidelberg: Springer-Verlag, 2007. |
65 | DUBOVYK O. The role of Remote Sensing in land degradation assessments: opportunities and challenges. European Journal of Remote Sensing, 2017, 50(1): 601-613. |
66 | YIN C C, ZHAO W W, CHERUBINI F, et al. Integrate ecosystem services into socio-economic development to enhance achievement of sustainable development goals in the post-pandemic era. Geography and Sustainability, 2021, 2(1): 68-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||