世界地理研究 ›› 2024, Vol. 33 ›› Issue (1): 57-69.DOI: 10.3969/j.issn.1004-9479.2024.01.20222146
收稿日期:
2022-08-21
修回日期:
2022-10-26
出版日期:
2024-01-15
发布日期:
2024-01-29
作者简介:
蔡中祥(1974—),男,教授,博士,主要研究方向为地区冲突与地缘安全,E-mail:get20201007@163.com。
基金资助:
Zhongxiang CAI(), Zhekun HUANG, Maoyu GONG, Yong GUO, Shengming HU, Yan WANG
Received:
2022-08-21
Revised:
2022-10-26
Online:
2024-01-15
Published:
2024-01-29
摘要:
为揭示2010—2021年印度国内政治冲突的空间分异性成因,基于武装冲突地点和事件数据项目所收录的印度政治冲突数据,结合印度各邦驱动因素值,运用Z-score标准化、相关性分析等方法构建驱动因子体系,运用地理探测器对上述驱动因子进行探测,结果表明:(1)14个驱动因子全部通过了显著性检验,其中穆斯林人口比、民族数、非官方政党占比、人口密度等因素单因子驱动力较强。(2)进行双因子交互,各驱动因子交互后q值有明显增长,平均增长率为266%,可知印度国内政治冲突是由多种驱动因子共同作用的结果,具有多重叠加效应,呈现“1+1>2”的作用机制;宗教民族类因子与其他类交互后,对空间分异性的解释性最大。(3)印度应改善地区政治安全局势,应优先解决宗教对抗、民族分离、粮食产量不稳定、水资源合理利用等问题。
蔡中祥, 黄哲琨, 公茂玉, 郭勇, 胡盛铭, 王岩. 印度国内政治冲突的空间分异及驱动因子[J]. 世界地理研究, 2024, 33(1): 57-69.
Zhongxiang CAI, Zhekun HUANG, Maoyu GONG, Yong GUO, Shengming HU, Yan WANG. Spatial differentiation and driving factors of domestic political conflicts in India[J]. World Regional Studies, 2024, 33(1): 57-69.
图1 2010—2021年印度政治冲突事件的空间分布注:基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2020)4393号的标准地图制作,底图无修改。
Fig.1 Spatial distribution of political conflict events in India from 2010 to 2021
指标体系 | 编号 | 具体指标 | 单位 | 指标含义 |
---|---|---|---|---|
经济社会 | X1 | 人均 GDP | 亿元 | 值越大,水平越高 |
X2 | 劳动力参与率 | % | 0 为最低,1为最高 | |
X3 | 人口密度 | 人/km2 | 值越大,密度越高 | |
X4 | 贫困率 | % | 0 为最低,1为最高 | |
X5 | 失业率 | % | 0 为最低,1为最高 | |
X6 | 识字率 | % | 0 为最低,1为最高 | |
X7 | 暴力犯罪数量 | 次数 | 值越大,次数越高 | |
资源 | X8 | 单位面积主要粮食作物产量 | 千吨/公顷 | 值越大,水平越高 |
X9 | 粮食作物面积占比 | % | 值越大,水平越高 | |
X10 | 乡村通电率 | % | 0 为最低,1为最高 | |
X11 | 人均用电量 | 千瓦时 | 值越大,水平越高 | |
X12 | 水资源储量 | 亿m3 | 值越大,水平越高 | |
政治 | X13 | 所占议会议席数 | 个 | 值越大,水平越高 |
X14 | 选民投票率 | % | 0 为最低,1为最高 | |
X15 | 政治一致指数 | — | 值越大,分异性越强 | |
X16 | 非官方政党占比 | % | 0 为最低,1为最高 | |
宗教民族 | X17 | 民族一致指数 | — | 值越大,分异性越强 |
X18 | 民族数 | — | 值越大,水平越高 | |
X19 | 穆斯林人口比 | % | 0 为最低,1为最高 | |
X20 | 印度教人口比 | % | 0 为最低,1为最高 |
表1 印度政治冲突的驱动因子初选指标体系
Tab.1 Primary index system of drivers of political conflict in India
指标体系 | 编号 | 具体指标 | 单位 | 指标含义 |
---|---|---|---|---|
经济社会 | X1 | 人均 GDP | 亿元 | 值越大,水平越高 |
X2 | 劳动力参与率 | % | 0 为最低,1为最高 | |
X3 | 人口密度 | 人/km2 | 值越大,密度越高 | |
X4 | 贫困率 | % | 0 为最低,1为最高 | |
X5 | 失业率 | % | 0 为最低,1为最高 | |
X6 | 识字率 | % | 0 为最低,1为最高 | |
X7 | 暴力犯罪数量 | 次数 | 值越大,次数越高 | |
资源 | X8 | 单位面积主要粮食作物产量 | 千吨/公顷 | 值越大,水平越高 |
X9 | 粮食作物面积占比 | % | 值越大,水平越高 | |
X10 | 乡村通电率 | % | 0 为最低,1为最高 | |
X11 | 人均用电量 | 千瓦时 | 值越大,水平越高 | |
X12 | 水资源储量 | 亿m3 | 值越大,水平越高 | |
政治 | X13 | 所占议会议席数 | 个 | 值越大,水平越高 |
X14 | 选民投票率 | % | 0 为最低,1为最高 | |
X15 | 政治一致指数 | — | 值越大,分异性越强 | |
X16 | 非官方政党占比 | % | 0 为最低,1为最高 | |
宗教民族 | X17 | 民族一致指数 | — | 值越大,分异性越强 |
X18 | 民族数 | — | 值越大,水平越高 | |
X19 | 穆斯林人口比 | % | 0 为最低,1为最高 | |
X20 | 印度教人口比 | % | 0 为最低,1为最高 |
相关性 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 |
---|---|---|---|---|---|---|---|---|---|---|
X1 | 1.00 | -0.11 | 0.45* | -0.70* | 0.20 | 0.38 | -0.37 | -0.34 | -0.19 | 0.32 |
X2 | -0.11 | 1.00 | -0.19 | 0.13 | -0.10 | -0.08 | -0.13 | -0.17 | -0.16 | -0.18 |
X3 | 0.45* | -0.19 | 1.00 | -0.10 | 0.32 | 0.07 | -0.10 | -0.19 | -0.12 | 0.21 |
X4 | -0.70* | 0.13 | -0.10 | 1.00 | -0.25 | -0.54* | 0.34 | 0.18 | 0.18 | -0.40 |
X5 | 0.20 | -0.10 | 0.32 | -0.25 | 1.00 | 0.04 | -0.15 | -0.08 | -0.19 | 0.14 |
X6 | 0.38 | -0.08 | 0.07 | -0.54* | 0.04 | 1.00 | -0.37 | -0.44* | -0.26 | 0.22 |
X7 | -0.37 | -0.13 | -0.10 | 0.34 | -0.15 | -0.37 | 1.00 | 0.72* | 0.69* | 0.14 |
X8 | -0.34 | -0.17 | -0.19 | 0.18 | -0.08 | -0.44* | 0.72* | 1.00 | 0.76* | 0.24 |
X9 | -0.19 | -0.16 | -0.12 | 0.18 | -0.19 | -0.26 | 0.69* | 0.76* | 1.00 | 0.23 |
X10 | 0.32 | -0.18 | 0.21 | -0.40 | 0.14 | 0.22 | 0.14 | 0.24 | 0.23 | 1.00 |
X11 | 0.26 | 0.00 | 0.26 | 0.16 | 0.09 | 0.07 | -0.17 | -0.15 | -0.15 | 0.24 |
X12 | -0.03 | 0.12 | -0.07 | 0.03 | -0.06 | 0.29 | -0.13 | -0.13 | -0.10 | -0.13 |
X13 | -0.31 | -0.18 | -0.16 | 0.23 | -0.25 | -0.36 | 0.90* | 0.80* | 0.75* | 0.25 |
X14 | 0.14 | 0.28 | 0.02 | -0.06 | -0.01 | 0.35 | -0.38 | -0.39 | -0.29 | -0.08 |
X15 | -0.29 | -0.13 | -0.16 | 0.19 | -0.27 | -0.43* | 0.81* | 0.79* | 0.73* | 0.27 |
X16 | -0.02 | 0.11 | -0.17 | -0.19 | -0.23 | -0.13 | 0.08 | 0.05 | 0.04 | 0.15 |
X17 | 0.19 | -0.13 | 0.21 | -0.27 | -0.27 | 0.27 | 0.16 | 0.26 | 0.22 | 0.54* |
X18 | -0.13 | 0.22 | -0.28 | 0.37 | -0.08 | -0.15 | -0.17 | -0.21 | -0.17 | -0.59* |
X19 | -0.31 | -0.28 | 0.02 | -0.22 | 0.04 | 0.11 | 0.09 | -0.06 | 0.01 | 0.14 |
X20 | 0.22 | -0.17 | 0.13 | 0.14 | 0.06 | -0.23 | 0.30 | 0.27 | 0.22 | 0.43* |
相关性 | X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 | X19 | X20 |
X1 | 0.26 | -0.03 | -0.31 | 0.14 | -0.29 | -0.02 | 0.19 | -0.13 | -0.31 | 0.22 |
X2 | 0.00 | 0.12 | -0.18 | 0.28 | -0.13 | 0.11 | -0.13 | 0.22 | -0.28 | -0.17 |
X3 | 0.26 | -0.07 | -0.16 | 0.02 | -0.16 | -0.17 | 0.21 | -0.28 | 0.02 | 0.13 |
X4 | 0.16 | 0.03 | 0.23 | -0.06 | 0.19 | -0.19 | -0.27 | 0.37 | -0.22 | 0.14 |
X5 | 0.09 | -0.06 | -0.25 | -0.01 | -0.27 | -0.23 | -0.27 | -0.08 | 0.04 | 0.06 |
X6 | 0.07 | 0.29 | -0.36 | 0.35 | -0.43* | -0.13 | 0.27 | -0.15 | 0.11 | -0.23 |
X7 | -0.17 | -0.13 | 0.90* | -0.38 | 0.81* | 0.08 | 0.16 | -0.17 | 0.09 | 0.30 |
X8 | -0.15 | -0.13 | 0.80* | -0.39 | 0.79* | 0.05 | 0.26 | -0.21 | -0.06 | 0.27 |
X9 | -0.15 | -0.10 | 0.75* | -0.29 | 0.73* | 0.04 | 0.22 | -0.17 | 0.01 | 0.22 |
X10 | 0.24 | -0.13 | 0.25 | -0.08 | 0.27 | 0.15 | 0.54* | -0.59* | 0.14 | 0.43* |
X11 | 1.00 | -0.08 | -0.16 | 0.12 | -0.14 | -0.17 | 0.00 | -0.13 | -0.13 | 0.27 |
X12 | -0.08 | 1.00 | -0.14 | -0.17 | -0.14 | -0.14 | 0.07 | 0.04 | -0.12 | -0.40 |
X13 | -0.16 | -0.14 | 1.00 | -0.42 | 0.97* | 0.15 | 0.31 | -0.24 | 0.03 | 0.35 |
X14 | 0.12 | -0.17 | -0.42 | 1.00 | -0.39 | 0.27 | 0.10 | 0.09 | -0.03 | -0.16 |
X15 | -0.14 | -0.14 | 0.97* | -0.39 | 1.00 | 0.20 | 0.34 | -0.25 | 0.00 | 0.39 |
X16 | -0.17 | -0.14 | 0.15 | 0.27 | 0.20 | 1.00 | 0.25 | -0.12 | -0.07 | -0.06 |
X17 | 0.00 | 0.07 | 0.31 | 0.10 | 0.34 | 0.25 | 1.00 | -0.74* | 0.16 | 0.16 |
X18 | -0.13 | 0.04 | -0.24 | 0.09 | -0.25 | -0.12 | -0.74* | 1.00 | -0.38 | -0.18 |
X19 | -0.13 | -0.12 | 0.03 | -0.03 | 0.00 | -0.07 | 0.16 | -0.38 | 1.00 | -0.38 |
X20 | 0.27 | -0.40 | 0.35 | -0.16 | 0.39 | -0.06 | 0.16 | -0.18 | -0.38 | 1.00 |
表2 印度政治冲突事件驱动因子之间的相关系数
Tab.2 Correlation coefficients among drivers of political conflict events in India
相关性 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 |
---|---|---|---|---|---|---|---|---|---|---|
X1 | 1.00 | -0.11 | 0.45* | -0.70* | 0.20 | 0.38 | -0.37 | -0.34 | -0.19 | 0.32 |
X2 | -0.11 | 1.00 | -0.19 | 0.13 | -0.10 | -0.08 | -0.13 | -0.17 | -0.16 | -0.18 |
X3 | 0.45* | -0.19 | 1.00 | -0.10 | 0.32 | 0.07 | -0.10 | -0.19 | -0.12 | 0.21 |
X4 | -0.70* | 0.13 | -0.10 | 1.00 | -0.25 | -0.54* | 0.34 | 0.18 | 0.18 | -0.40 |
X5 | 0.20 | -0.10 | 0.32 | -0.25 | 1.00 | 0.04 | -0.15 | -0.08 | -0.19 | 0.14 |
X6 | 0.38 | -0.08 | 0.07 | -0.54* | 0.04 | 1.00 | -0.37 | -0.44* | -0.26 | 0.22 |
X7 | -0.37 | -0.13 | -0.10 | 0.34 | -0.15 | -0.37 | 1.00 | 0.72* | 0.69* | 0.14 |
X8 | -0.34 | -0.17 | -0.19 | 0.18 | -0.08 | -0.44* | 0.72* | 1.00 | 0.76* | 0.24 |
X9 | -0.19 | -0.16 | -0.12 | 0.18 | -0.19 | -0.26 | 0.69* | 0.76* | 1.00 | 0.23 |
X10 | 0.32 | -0.18 | 0.21 | -0.40 | 0.14 | 0.22 | 0.14 | 0.24 | 0.23 | 1.00 |
X11 | 0.26 | 0.00 | 0.26 | 0.16 | 0.09 | 0.07 | -0.17 | -0.15 | -0.15 | 0.24 |
X12 | -0.03 | 0.12 | -0.07 | 0.03 | -0.06 | 0.29 | -0.13 | -0.13 | -0.10 | -0.13 |
X13 | -0.31 | -0.18 | -0.16 | 0.23 | -0.25 | -0.36 | 0.90* | 0.80* | 0.75* | 0.25 |
X14 | 0.14 | 0.28 | 0.02 | -0.06 | -0.01 | 0.35 | -0.38 | -0.39 | -0.29 | -0.08 |
X15 | -0.29 | -0.13 | -0.16 | 0.19 | -0.27 | -0.43* | 0.81* | 0.79* | 0.73* | 0.27 |
X16 | -0.02 | 0.11 | -0.17 | -0.19 | -0.23 | -0.13 | 0.08 | 0.05 | 0.04 | 0.15 |
X17 | 0.19 | -0.13 | 0.21 | -0.27 | -0.27 | 0.27 | 0.16 | 0.26 | 0.22 | 0.54* |
X18 | -0.13 | 0.22 | -0.28 | 0.37 | -0.08 | -0.15 | -0.17 | -0.21 | -0.17 | -0.59* |
X19 | -0.31 | -0.28 | 0.02 | -0.22 | 0.04 | 0.11 | 0.09 | -0.06 | 0.01 | 0.14 |
X20 | 0.22 | -0.17 | 0.13 | 0.14 | 0.06 | -0.23 | 0.30 | 0.27 | 0.22 | 0.43* |
相关性 | X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 | X19 | X20 |
X1 | 0.26 | -0.03 | -0.31 | 0.14 | -0.29 | -0.02 | 0.19 | -0.13 | -0.31 | 0.22 |
X2 | 0.00 | 0.12 | -0.18 | 0.28 | -0.13 | 0.11 | -0.13 | 0.22 | -0.28 | -0.17 |
X3 | 0.26 | -0.07 | -0.16 | 0.02 | -0.16 | -0.17 | 0.21 | -0.28 | 0.02 | 0.13 |
X4 | 0.16 | 0.03 | 0.23 | -0.06 | 0.19 | -0.19 | -0.27 | 0.37 | -0.22 | 0.14 |
X5 | 0.09 | -0.06 | -0.25 | -0.01 | -0.27 | -0.23 | -0.27 | -0.08 | 0.04 | 0.06 |
X6 | 0.07 | 0.29 | -0.36 | 0.35 | -0.43* | -0.13 | 0.27 | -0.15 | 0.11 | -0.23 |
X7 | -0.17 | -0.13 | 0.90* | -0.38 | 0.81* | 0.08 | 0.16 | -0.17 | 0.09 | 0.30 |
X8 | -0.15 | -0.13 | 0.80* | -0.39 | 0.79* | 0.05 | 0.26 | -0.21 | -0.06 | 0.27 |
X9 | -0.15 | -0.10 | 0.75* | -0.29 | 0.73* | 0.04 | 0.22 | -0.17 | 0.01 | 0.22 |
X10 | 0.24 | -0.13 | 0.25 | -0.08 | 0.27 | 0.15 | 0.54* | -0.59* | 0.14 | 0.43* |
X11 | 1.00 | -0.08 | -0.16 | 0.12 | -0.14 | -0.17 | 0.00 | -0.13 | -0.13 | 0.27 |
X12 | -0.08 | 1.00 | -0.14 | -0.17 | -0.14 | -0.14 | 0.07 | 0.04 | -0.12 | -0.40 |
X13 | -0.16 | -0.14 | 1.00 | -0.42 | 0.97* | 0.15 | 0.31 | -0.24 | 0.03 | 0.35 |
X14 | 0.12 | -0.17 | -0.42 | 1.00 | -0.39 | 0.27 | 0.10 | 0.09 | -0.03 | -0.16 |
X15 | -0.14 | -0.14 | 0.97* | -0.39 | 1.00 | 0.20 | 0.34 | -0.25 | 0.00 | 0.39 |
X16 | -0.17 | -0.14 | 0.15 | 0.27 | 0.20 | 1.00 | 0.25 | -0.12 | -0.07 | -0.06 |
X17 | 0.00 | 0.07 | 0.31 | 0.10 | 0.34 | 0.25 | 1.00 | -0.74* | 0.16 | 0.16 |
X18 | -0.13 | 0.04 | -0.24 | 0.09 | -0.25 | -0.12 | -0.74* | 1.00 | -0.38 | -0.18 |
X19 | -0.13 | -0.12 | 0.03 | -0.03 | 0.00 | -0.07 | 0.16 | -0.38 | 1.00 | -0.38 |
X20 | 0.27 | -0.40 | 0.35 | -0.16 | 0.39 | -0.06 | 0.16 | -0.18 | -0.38 | 1.00 |
指标体系 | 编号 | 具体指标 | 指标体系 | 编号 | 具体指标 |
---|---|---|---|---|---|
经济社会 | X1 | 人均 GDP | 资源 | X8 | 单位面积主要粮食作物产量 |
X2 | 劳动力参与率 | X10 | 乡村通电率 | ||
X3 | 人口密度 | X11 | 人均用电量 | ||
X5 | 失业率 | X12 | 水资源储量 | ||
X6 | 识字率 | 宗教民族 | X18 | 民族数 | |
政治 | X14 | 选民投票率 | X19 | 穆斯林人口比 | |
X16 | 非官方政党占比 | X20 | 印度教人口比 |
表3 印度政治冲突驱动因子评价指标
Tab.3 Evaluation indicators of drivers of political conflict in India
指标体系 | 编号 | 具体指标 | 指标体系 | 编号 | 具体指标 |
---|---|---|---|---|---|
经济社会 | X1 | 人均 GDP | 资源 | X8 | 单位面积主要粮食作物产量 |
X2 | 劳动力参与率 | X10 | 乡村通电率 | ||
X3 | 人口密度 | X11 | 人均用电量 | ||
X5 | 失业率 | X12 | 水资源储量 | ||
X6 | 识字率 | 宗教民族 | X18 | 民族数 | |
政治 | X14 | 选民投票率 | X19 | 穆斯林人口比 | |
X16 | 非官方政党占比 | X20 | 印度教人口比 |
1 | IISS. Armed conflict survey 2020. (2020-03-27) [2020-11-24]. . |
2 | RALEIGH C, LINKE A, HEGRE H, et al. Introducing ACLED-Armed conflict location and event data. Journal of Peace Research, 2010,47(5):651-660. |
3 | 黄哲琨,蔡中祥,公茂玉,等.印度武装冲突事件的时空演变分析.测绘科学技术学报,2021,38(4):422-429. |
HUANG Z, CAI Z, GONG M,et al. Spatial-temporal evolution of armed conflicts in India. Journal of Surveying and Mapping Science and Technology,2021,38(4):422-429. | |
4 | A K. The 2008 Mumbai terror attacks:(Re-) Constructing Indian (counter-) terrorism. Critical Studies on Terrorism, 2010,1(3):83-98. |
5 | NAQVI S. Decolonized representation of Kashmir conflict. ACSS-SSTR 2017, 2017(1):12-16. |
6 | OSMANI S. Fiscal deficits and economic growth: Contrasting Bangladesh with the rest of South Asia. University Press Limited, 2009(5):36-45. |
7 | Food RASUL G., water, and energy security in South Asia : A nexus perspective from the Hindu Kush Himalayan region. Environmental Science & Policy, 2014, 39(5):35-48. |
8 | FRIJNS B, TOURANI-RAD A, INDRIAWAN I. Political crises and the stock market integration of emerging markets. Journal of Banking & Finance, 2012,36(3): 644-653. |
9 | JV A, HB A, NVUA B. Why do some poor countries see armed conflict while others do not? A dual sector approach. World Development, 2020,13(8): 105-273. |
10 | RONALD B L: Libya's fragmentation: Structure and process in violent conflict. The Middle East Journal, 2020,74(3):36-43. |
11 | FAHEY S, LAFREE G. Does country-level social disorganization increase terrorist attacks? Terrorism and Political Violence, 2015,27(1):89-98. |
12 | DAVID H, BENJAMIN F. Temperature anomalies affect violent conflicts in African and Middle Eastern warm regions. Global Environmental Change, 2020(63): 55-71. |
13 | ZHANG R, ANDAM F, SHI G. Environmental and social risk evaluation of overseas investment under the China-Pakistan Economic Corridor. Environmental Monitoring and Assessment, 2017,189(6):251-253. |
14 | 黄平."一带一路"建设中的宗教风险--以巴基斯坦为例.上海交通大学学报(哲学社会科学版),2017, 25(3): 14-22. |
HUANG P. Religious risk in the construction of "One Belt and One Road": A case study of Pakistan. Journal of Shanghai Jiao Tong university (philosophy and social sciences edition),2017, 25(3): 14-22. | |
15 | ADAMCZYK A, LAFREE G. Religiosity and reactions to terrorism. Social Science Research, 2015(51):17-29. |
16 | NASEEMULLAH, ADNAN. Riots and rebellion: State, society and the geography of conflict in India. Political Geography, 2018(63): 104-115. |
17 | WEINER M. Sons of the Soil: Migration and Ethnic Conflict in India. New Jersey: Princeton University Press, 2015. |
18 | KUMAR A. Rethinking state politics in India. Economic and Political Weekly, 2011(19):14-19. |
19 | KHAM H, KHAN M. Rethinking 'tribe' identities. Contributions to Indian Sociology, 2011,45(2):32-48. |
20 | GILBERT É, VARSHNEY A. Ethnic conflict & civic life: Hindus and Muslims in India. Revue Tiers Monde, 2003(44):232-247. |
21 | 王劲峰,徐成东.地理探测器:原理与展望.地理学报,2017,72(1):116-134. |
WANG J, XU C. Geographic detectors: Principles and prospects. Acta geographica sinica,2017,72(1):116-134. | |
22 | 李云涛,陶犁.基于地理探测器的云南省边境州市旅游发展水平空间分异及影响因素分析.世界地理研究,2022,31(3):624-636. |
LI Y, TAO L. Spatial differentiation and influencing factors of tourism development level in border cities of Yunnan Province based on geographic detectors. World Geographic Research,2022,31(3):624-636. | |
23 | JU H, ZHANG Z, ZUO L, et al. Driving forces and their interactions of built-up land expansion based on the geographical detector: A case study of Beijing, China. International Journal of Geographical Information Science, 2016,30(11):2188-2207. |
24 | WANG Y, WANG S, LI G, et al. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Applied Geography, 2017,79:26-36. |
25 | 杨洋,乔家君,郭远智,等. 广东省瞪羚企业空间分布特征及驱动机制经济地理, 2022,42(8):112-122. |
YANG Y, QIAO J, GUO Y,et al. Spatial distribution characteristics and driving mechanism of gazelle enterprises in Guangdong Province. Economic Geography,2022,42(8): 112-122. | |
26 | JAMISON C. Ethno-political conflict in Pakistan: The Baloch movement. Commonwealth & Comparative Politics, 2020,58(4): 213-222. |
27 | CUERVO-CAZURRA A. Better the devil you don't know: Types of corruption and FDI in transition economies. Journal of International Management, 2008,14(1): 12-27. |
28 | 高舒欣,王兴平.印度经济特区分布的时空演化分析.经济地理,2019,39(11):9-17. |
GAO S, WANG X. Spatial-temporal evolution of the distribution of special economic zones in India. Economic Geography,2019, 39(11):9-17. | |
29 | SAEED L, SYED S. Insights into selected features of Pakistan's most wanted terrorists. Terrorism and Political Violence, 2018, 30(1): 47-73. |
30 | DAVID I, SUNIL K, PASCAL F, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. 2013,30(3):69-78. |
31 | PIANG L. Overlapping territorial claims and ethnic conflict in Manipur. South Asia Research, 2015,35(2):158-176. |
32 | 张学珍,李侠祥,张丽娟,等.RCP 8.5气候变化情景下21世纪印度粮食单产变化的多模式集合模拟.地理学报,2019,74(11): 2314-2328. |
ZHANG X, LI X, ZHANG L, et al. RCP 8.5 Multi-model ensemble simulation of changes in grain yield per unit area in India in the 21st century under climate change scenarios. Acta Geographica Sinica, 2019,74(11): 2314-2328. | |
33 | FENG J, ZHU M, LIANG H, et al. Prenatal diagnosis of right dominant heart in fetuses: A tertiary center experience over a 7-year Period. Chinese medical journal, 2017,130(5): 25-34. |
[1] | 刘采玮, 张红, 唐诗钰. 印度道路网的分形自组织与协同特征[J]. 世界地理研究, 2024, 33(1): 43-56. |
[2] | 廖建军, 李欣, 王志远, 张考, 吕靖童. 长株潭都市圈建设用地增长格局及驱动因素研究[J]. 世界地理研究, 2023, 32(9): 133-145. |
[3] | 牛雪利, 陈瑛, 巴士奇. 中国与加勒比国家贸易格局演变及影响因素分析[J]. 世界地理研究, 2023, 32(9): 28-39. |
[4] | 苏盼盼. 亚洲国家公园的建设实践及其启示[J]. 世界地理研究, 2023, 32(7): 160-168. |
[5] | 刘涵妮, 夏赞才, 殷章馨, 申慧敏, 刘婷, 张慧. 全球旅游贸易时空格局及影响因素研究[J]. 世界地理研究, 2023, 32(4): 14-27. |
[6] | 银松, 李瑞, 殷红梅. 旅游发展背景下民族村寨居民地方性感知测度及影响因素研究[J]. 世界地理研究, 2023, 32(3): 144-156. |
[7] | 高璐, 余可忆, 姚申君, 吴健平, 余柏蒗. 基于地理探测的老子思想域外关注度影响因素探究[J]. 世界地理研究, 2023, 32(12): 67-77. |
[8] | 陈俊华, 苏敏, 李澳, 梁嘉玲, 王美君, 杨晓璐. 中东地缘环境时空演变及驱动机制分析[J]. 世界地理研究, 2023, 32(11): 30-42. |
[9] | 潘玥, 宋涛, 李富玉. 多尺度地缘政治要素推拉作用下的印度尼西亚迁都计划研究[J]. 世界地理研究, 2023, 32(11): 57-68. |
[10] | 肖钊富, 李瑞, 吕宛青. 成渝城市群旅游生态安全时空格局演化研究[J]. 世界地理研究, 2023, 32(10): 122-133. |
[11] | 闫艺涵, 汪侠, 张颖, 沈丽珍. 中国居民休闲参与测度及其制约因素探究[J]. 世界地理研究, 2023, 32(10): 161-172. |
[12] | 陈鹏鑫, 曾刚, 胡浩, 何金廖, 葛世帅. 国家高新区研发人员集聚的空间特征与影响因子探究[J]. 世界地理研究, 2023, 32(1): 80-91. |
[13] | 陈昕, 谢玲, 刘素红, 贾艳红, 肖小慧, 梁瑜. 广西手足口病时空分异及其地理环境因子 探测分析[J]. 世界地理研究, 2022, 31(5): 1108-1118. |
[14] | 张红, 邓雯, 王艺. 2000—2020年印度土地利用的时空演化及驱动因素分析[J]. 世界地理研究, 2022, 31(4): 786-799. |
[15] | 李云涛, 陶犁. 基于地理探测器的云南省边境州市旅游发展水平空间分异及影响因素分析[J]. 世界地理研究, 2022, 31(3): 624-636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||