世界地理研究 ›› 2021, Vol. 30 ›› Issue (2): 355-366.DOI: 10.3969/j.issn.1004-9479.2021.02.2019534
收稿日期:
2019-10-23
修回日期:
2020-02-05
出版日期:
2021-03-30
发布日期:
2021-04-09
通讯作者:
李涛
作者简介:
刘国燕(1984-),女,硕士,助理研究员,研究方向:城市经济与产业创新,E-mail: yaner_126@126.com。
基金资助:
Received:
2019-10-23
Revised:
2020-02-05
Online:
2021-03-30
Published:
2021-04-09
Contact:
Tao LI
摘要:
探究高速铁路对区域创新的影响机制将深远影响我国区域经济发展。运用ESDA、SDM和求偏微分等方法,测算了由高铁开通带来的时空压缩对区域创新产出产生的直接效应和间接效应,并通过分地区回归对异质性进行了深入分析。结果表明:我国创新产出具有显著的空间相关性,且集聚程度不断增强,“核心-外围”区域基本形成,创新活动具有一定的锁定特征;其中,R&D人员投入、FDI、政府财政科技支出和居民消费支出是影响区域创新产出的重要因素;高铁开通对创新的影响存在空间异质性,R&D人员全时当量对东部地区的影响最大,东北和中部地区则同时依赖于R&D人员和R&D资本投入,西部地区并未受到极化影响,反而因时空压缩产生了正向溢出效应。
刘国燕, 李涛. 高铁影响下的中国区域创新时空演化与效应分解[J]. 世界地理研究, 2021, 30(2): 355-366.
Guoyan LIU, Tao LI. Impact of high-speed railway development on regional innovation from the perspective of spatial effect[J]. World Regional Studies, 2021, 30(2): 355-366.
年份 | Moran's I | 年份 | Moran's I | 年份 | Moran's I | 年份 | Moran's I |
---|---|---|---|---|---|---|---|
2002 | 0.3025*** | 2006 | 0.3504*** | 2010 | 0.3835*** | 2014 | 0.3889*** |
2003 | 0.3219*** | 2007 | 0.3355*** | 2011 | 0.3841*** | 2015 | 0.4068*** |
2004 | 0.3622*** | 2008 | 0.3376*** | 2012 | 0.4083*** | 2016 | 0.3978*** |
2005 | 0.3413*** | 2009 | 0.3499*** | 2013 | 0.4020*** | 2017 | 0.4164*** |
表1 2002—2017年区域创新产出的Moran's I指数
Tab.1 The Moran's I index of regional innovation output from 2002 to 2017
年份 | Moran's I | 年份 | Moran's I | 年份 | Moran's I | 年份 | Moran's I |
---|---|---|---|---|---|---|---|
2002 | 0.3025*** | 2006 | 0.3504*** | 2010 | 0.3835*** | 2014 | 0.3889*** |
2003 | 0.3219*** | 2007 | 0.3355*** | 2011 | 0.3841*** | 2015 | 0.4068*** |
2004 | 0.3622*** | 2008 | 0.3376*** | 2012 | 0.4083*** | 2016 | 0.3978*** |
2005 | 0.3413*** | 2009 | 0.3499*** | 2013 | 0.4020*** | 2017 | 0.4164*** |
象限 | 2010年 | 2017年 |
---|---|---|
象限1:HH | 山东、河南、江苏、安徽、湖北、浙江、湖南、福建、广东、辽宁、天津、陕西、河北、上海、北京 | 山东、河南、江苏、安徽、湖北、浙江、江西、湖南、福建、广东、辽宁、天津、陕西、重庆、河北、上海、北京 |
象限2:LH | 黑龙江、山西、江西、宁夏、贵州、海南、广西、内蒙古、吉林 | 宁夏、山西、云南、贵州、广西、海南、吉林、内蒙古 |
象限3:LL | 新疆、云南、西藏、甘肃、青海 | 黑龙江、西藏、新疆、青海、甘肃 |
象限4:HL | 重庆、四川 | 四川 |
表2 2010和2017年区域创新产出的LISA聚类结果
Tab.2 LISA clustering results of regional innovation output in 2010 and 2017
象限 | 2010年 | 2017年 |
---|---|---|
象限1:HH | 山东、河南、江苏、安徽、湖北、浙江、湖南、福建、广东、辽宁、天津、陕西、河北、上海、北京 | 山东、河南、江苏、安徽、湖北、浙江、江西、湖南、福建、广东、辽宁、天津、陕西、重庆、河北、上海、北京 |
象限2:LH | 黑龙江、山西、江西、宁夏、贵州、海南、广西、内蒙古、吉林 | 宁夏、山西、云南、贵州、广西、海南、吉林、内蒙古 |
象限3:LL | 新疆、云南、西藏、甘肃、青海 | 黑龙江、西藏、新疆、青海、甘肃 |
象限4:HL | 重庆、四川 | 四川 |
变量 | 系数 | t值 | |
---|---|---|---|
C | -4.086*** | -10.876 | |
R&DP | 0.373*** | 6.813 | |
R&DE | 0.020 | 0.354 | |
PGDP | -0.313*** | -2.936 | |
FDI | 0.003*** | 7.382 | |
GOV | -0.001** | -2.284 | |
CON | 0.395*** | 2.874 | |
FIN | 0.885*** | 16.702 | |
R2 | 0.957 | Durbin-Watson | 1.675 |
sigma^2 | 0.144 | loglikols | -218.944 |
LM test no spatial Lag | 14.149*** | LM test no spatial error | 9.894*** |
robust LM test no spatial lag | 9.238*** | robust LM test no spatial error | 4.982** |
表3 OLS面板模型估计结果
Tab.3 The estimation results of OLS panel model
变量 | 系数 | t值 | |
---|---|---|---|
C | -4.086*** | -10.876 | |
R&DP | 0.373*** | 6.813 | |
R&DE | 0.020 | 0.354 | |
PGDP | -0.313*** | -2.936 | |
FDI | 0.003*** | 7.382 | |
GOV | -0.001** | -2.284 | |
CON | 0.395*** | 2.874 | |
FIN | 0.885*** | 16.702 | |
R2 | 0.957 | Durbin-Watson | 1.675 |
sigma^2 | 0.144 | loglikols | -218.944 |
LM test no spatial Lag | 14.149*** | LM test no spatial error | 9.894*** |
robust LM test no spatial lag | 9.238*** | robust LM test no spatial error | 4.982** |
变量 | 统计值 | 变量 | 统计值 |
---|---|---|---|
Hausman test | 24.260** | ||
Wald_spatial_lag | 41.551*** | LR_spatial_lag | 47.715*** |
Wald_spatial_error | 48.092*** | LR_spatial_error | 52.734*** |
表4 LR和Wald检验
Tab.4 The LR and Wald test
变量 | 统计值 | 变量 | 统计值 |
---|---|---|---|
Hausman test | 24.260** | ||
Wald_spatial_lag | 41.551*** | LR_spatial_lag | 47.715*** |
Wald_spatial_error | 48.092*** | LR_spatial_error | 52.734*** |
效应 | 空间权重 | (1) 地理距离 2002—2017 | (2) 时间距离(不含高铁) 2002—2009 | (3) 时间距离(不含高铁) 2010—2017 | (4) 时间距离(含高铁) 2010—2017 |
---|---|---|---|---|---|
直接效应 | R&DP | 0.131** (2.192) | 0.173*** (3.051) | 0.287* (1.933) | 0.833*** (5.421) |
R&DE | -0.162*** (-2.766) | -0.013 (-0.237) | 0.780*** (12.549) | 0.029 (0.216) | |
PGDP | 0.588*** (3.553) | 0.419*** (2.639) | -0.415** (-2.373) | -0.759*** (-4.212) | |
FDI | 0.003*** (4.415) | 0.025 (0.947) | 0.056* (1.687) | 0.087*** (2.920) | |
GOV | -0.000 (-0.537) | 0.078 (1.181) | 0.354*** (4.754) | 0.419*** (5.809) | |
CON | 0.185 (0.746) | -0.270 (-1.481) | 0.081 (0.405) | 0.654*** (3.129) | |
FIN | 0.160* (1.908) | 1.062*** (12.059) | 0.035 (0.367) | -0.090 (-1.016) | |
间接效应 | R&DP | 1.232* (1.897) | 0.496* (1.872) | -0.476 (-1.169) | -4.995*** (-4.367) |
R&DE | -0.691 (-1.047) | -0.268 (-0.988) | -0.914*** (-2.604) | 3.247*** (2.992) | |
PGDP | -0.628 (-0.405) | -2.721*** (-4.533) | -2.824*** (-4.798) | -4.237*** (-4.173) | |
FDI | 0.018** (2.453) | 0.418*** (3.740) | 0.065 (0.513) | 0.139 (0.765) | |
GOV | -0.001 (0.107) | 0.181 (0.592) | 0.953** (2.439) | 0.477 (0.764) | |
CON | 4.894* (1.682) | 2.551*** (3.026) | 3.569*** (4.162) | 4.574*** (3.083) | |
FIN | 2.121* (1.939) | -0.173 (-1.556) | -0.007 (-0.020) | 0.873 (1.185) | |
总效应 | R&DP | 1.362** (2.013) | 0.669** (2.500) | -0.189 (-0.536) | -4.162*** (-3.431) |
R&DE | -0.854 (-1.234) | -0.281 (-1.034) | -0.134 (-0.397) | 3.276*** (2.898) | |
PGDP | -0.041 (-0.026) | -2.302*** (-4.083) | -3.239*** (-5.409) | -4.996*** (-4.629) | |
FDI | 0.021*** (2.683) | 0.443*** (4.045) | 0.121 (0.964) | 0.226 (1.188) | |
GOV | -0.001 (-0.151) | 0.259 (0.844) | 1.307*** (3.456) | 0.896 (1.397) | |
CON | 5.079* (1.651) | 2.281*** (2.637) | 3.651*** (4.087) | 5.228*** (3.345) | |
FIN | 2.281** (2.046) | 0.349 (0.754) | 0.028 (0.078) | 0.782 (1.036) |
表5 空间杜宾模型效应分解估计结果
Tab.5 The effect decomposition estimation results of spatial Durbin model
效应 | 空间权重 | (1) 地理距离 2002—2017 | (2) 时间距离(不含高铁) 2002—2009 | (3) 时间距离(不含高铁) 2010—2017 | (4) 时间距离(含高铁) 2010—2017 |
---|---|---|---|---|---|
直接效应 | R&DP | 0.131** (2.192) | 0.173*** (3.051) | 0.287* (1.933) | 0.833*** (5.421) |
R&DE | -0.162*** (-2.766) | -0.013 (-0.237) | 0.780*** (12.549) | 0.029 (0.216) | |
PGDP | 0.588*** (3.553) | 0.419*** (2.639) | -0.415** (-2.373) | -0.759*** (-4.212) | |
FDI | 0.003*** (4.415) | 0.025 (0.947) | 0.056* (1.687) | 0.087*** (2.920) | |
GOV | -0.000 (-0.537) | 0.078 (1.181) | 0.354*** (4.754) | 0.419*** (5.809) | |
CON | 0.185 (0.746) | -0.270 (-1.481) | 0.081 (0.405) | 0.654*** (3.129) | |
FIN | 0.160* (1.908) | 1.062*** (12.059) | 0.035 (0.367) | -0.090 (-1.016) | |
间接效应 | R&DP | 1.232* (1.897) | 0.496* (1.872) | -0.476 (-1.169) | -4.995*** (-4.367) |
R&DE | -0.691 (-1.047) | -0.268 (-0.988) | -0.914*** (-2.604) | 3.247*** (2.992) | |
PGDP | -0.628 (-0.405) | -2.721*** (-4.533) | -2.824*** (-4.798) | -4.237*** (-4.173) | |
FDI | 0.018** (2.453) | 0.418*** (3.740) | 0.065 (0.513) | 0.139 (0.765) | |
GOV | -0.001 (0.107) | 0.181 (0.592) | 0.953** (2.439) | 0.477 (0.764) | |
CON | 4.894* (1.682) | 2.551*** (3.026) | 3.569*** (4.162) | 4.574*** (3.083) | |
FIN | 2.121* (1.939) | -0.173 (-1.556) | -0.007 (-0.020) | 0.873 (1.185) | |
总效应 | R&DP | 1.362** (2.013) | 0.669** (2.500) | -0.189 (-0.536) | -4.162*** (-3.431) |
R&DE | -0.854 (-1.234) | -0.281 (-1.034) | -0.134 (-0.397) | 3.276*** (2.898) | |
PGDP | -0.041 (-0.026) | -2.302*** (-4.083) | -3.239*** (-5.409) | -4.996*** (-4.629) | |
FDI | 0.021*** (2.683) | 0.443*** (4.045) | 0.121 (0.964) | 0.226 (1.188) | |
GOV | -0.001 (-0.151) | 0.259 (0.844) | 1.307*** (3.456) | 0.896 (1.397) | |
CON | 5.079* (1.651) | 2.281*** (2.637) | 3.651*** (4.087) | 5.228*** (3.345) | |
FIN | 2.281** (2.046) | 0.349 (0.754) | 0.028 (0.078) | 0.782 (1.036) |
地区 | R&DP | R&DE | PGDP | FDI | GOV | CON | FIN |
---|---|---|---|---|---|---|---|
直接效应 | |||||||
东部 | 1.803*** (-12.291) | -0.762*** (-6.359) | 0.137 (-0.619) | 0.001*** (-2.737) | -0.000** (-1.986) | 0.233*** (-2.846) | 0.319*** (-3.126) |
东北 | 1.545* (-1.764) | 0.008* (-1.809) | -0.561 (-0.954) | 0.002*** (-2.822) | -0.015 (-1.045) | 1.717** (-2.41) | 0.113** (-2.049) |
中部 | 0.246** (-2.508) | 1.321*** (-3.285) | -1.865*** (-3.808) | 0.002** (-1.886) | 0.001* (-1.805) | 0.919 (-1.257) | 0.378** (-1.975) |
西部 | 0.337* (-1.804) | 0.678** (-2.294) | -0.511* (-1.985) | -0.004* (-1.680) | 0.013*** (-3.927) | 0 (-0.002) | 0.013 (-1.796) |
间接效应 | |||||||
东部 | 0.755*** (-3.292) | -0.316*** (-3.213) | 0.059 (-0.591) | 0.001** (-2.558) | -0.001** (-1.875) | 0.091** (-2.116) | 0.127*** (-3.003) |
东北 | 0.061* (-1.705) | 0.026 (-0.147) | -0.069 (-0.362) | 0 (-0.156) | -0.001 (-0.902) | 0.046* (-1.726) | 0.007** (-1.861) |
中部 | 0.041* -1.679 | 0.359* -1.74 | -0.468 (-0.866) | 0.001** -2.107 | 0 -0.353 | 0.179 -0.566 | 0.051** -2.382 |
西部 | 0.249** -1.971 | 0.491** -1.752 | -0.349* -1.827) | -0.003* (-1.825) | 0.009*** -2.713 | -0.034 (-0.116) | 0.007 -0.736 |
总效应 | |||||||
东部 | 2.558*** (-7.603) | -1.078*** (-5.662) | 0.197 (-0.617) | 0.002*** (-2.851) | -0.001 (-2.018) | 0.324* (-1.651) | 0.116*** (-3.342) |
东北 | 1.607* (-1.714) | 0.034* (-1.675) | 0.631 (-0.573) | 0.003** (-2.531) | -0.016 (-0.991) | 1.763** (-2.104) | 0.120** (-1.954) |
中部 | 0.288** (-2.108) | 1.68 (-2.231) | -2.333* (-2.890) | 0.003** (-1.986) | 0.001* (-1.747) | 1.099 (-1.196) | 0.429** (-2.174) |
西部 | 0.586*** (-1.869) | 1.169** (-2.131) | -0.860** (-2.028) | -0.007* (-1.902) | 0.022*** (-3.784) | -0.034 (-0.049) | 0.021 (-1.087) |
表6 分地区空间杜宾模型效应分解估计结果
Tab.6 The effect decomposition estimation results of spatial Durbin model by Region
地区 | R&DP | R&DE | PGDP | FDI | GOV | CON | FIN |
---|---|---|---|---|---|---|---|
直接效应 | |||||||
东部 | 1.803*** (-12.291) | -0.762*** (-6.359) | 0.137 (-0.619) | 0.001*** (-2.737) | -0.000** (-1.986) | 0.233*** (-2.846) | 0.319*** (-3.126) |
东北 | 1.545* (-1.764) | 0.008* (-1.809) | -0.561 (-0.954) | 0.002*** (-2.822) | -0.015 (-1.045) | 1.717** (-2.41) | 0.113** (-2.049) |
中部 | 0.246** (-2.508) | 1.321*** (-3.285) | -1.865*** (-3.808) | 0.002** (-1.886) | 0.001* (-1.805) | 0.919 (-1.257) | 0.378** (-1.975) |
西部 | 0.337* (-1.804) | 0.678** (-2.294) | -0.511* (-1.985) | -0.004* (-1.680) | 0.013*** (-3.927) | 0 (-0.002) | 0.013 (-1.796) |
间接效应 | |||||||
东部 | 0.755*** (-3.292) | -0.316*** (-3.213) | 0.059 (-0.591) | 0.001** (-2.558) | -0.001** (-1.875) | 0.091** (-2.116) | 0.127*** (-3.003) |
东北 | 0.061* (-1.705) | 0.026 (-0.147) | -0.069 (-0.362) | 0 (-0.156) | -0.001 (-0.902) | 0.046* (-1.726) | 0.007** (-1.861) |
中部 | 0.041* -1.679 | 0.359* -1.74 | -0.468 (-0.866) | 0.001** -2.107 | 0 -0.353 | 0.179 -0.566 | 0.051** -2.382 |
西部 | 0.249** -1.971 | 0.491** -1.752 | -0.349* -1.827) | -0.003* (-1.825) | 0.009*** -2.713 | -0.034 (-0.116) | 0.007 -0.736 |
总效应 | |||||||
东部 | 2.558*** (-7.603) | -1.078*** (-5.662) | 0.197 (-0.617) | 0.002*** (-2.851) | -0.001 (-2.018) | 0.324* (-1.651) | 0.116*** (-3.342) |
东北 | 1.607* (-1.714) | 0.034* (-1.675) | 0.631 (-0.573) | 0.003** (-2.531) | -0.016 (-0.991) | 1.763** (-2.104) | 0.120** (-1.954) |
中部 | 0.288** (-2.108) | 1.68 (-2.231) | -2.333* (-2.890) | 0.003** (-1.986) | 0.001* (-1.747) | 1.099 (-1.196) | 0.429** (-2.174) |
西部 | 0.586*** (-1.869) | 1.169** (-2.131) | -0.860** (-2.028) | -0.007* (-1.902) | 0.022*** (-3.784) | -0.034 (-0.049) | 0.021 (-1.087) |
1 | Romer P M. Increasing returns and long-run growth. Journal of Political Economy, 1986, 94 (5): 1002–37. |
2 | Crescenzi R, Rodriguez-Pose A, Storper M. The territorial dynamics of innovation in China and India. Journal of Economic Geography, 2012, 12 (5): 1055-85. |
3 | 王庆喜, 王巧娜, 徐维祥. 我国高技术产业省际知识溢出:基于地理和技术邻近的分析. 经济地理, 2013, 33(5): 111-116+136. |
Wang J,Wang Q,Xu W. Technological and geographical proximity effects on knowledge spillovers: Evidence from Chinese provincial High-tech industries. Economic Geography, 2013, 33(5): 111-116+136. | |
4 | 何舜辉, 杜德斌, 焦美琪, 等. 中国地级以上城市创新能力的时空格局演变及影响因素分析. 地理科学, 2017, 37(7): 1014-1022. |
He S,Du D,Jiao M, et, al. Spatial-Temporal characteristics of urban innovation capability and impact factors analysis in China. Scientia Geographica Sinica, 2017, 37(7): 1014-1022. | |
5 | 王雨飞, 倪鹏飞. 高速铁路影响下的经济增长溢出与区域空间优化. 中国工业经济, 2016(2): 21-36. |
Wang Y,Ni P.Economic growth spillover and spatial optimization of High-speed railway. China Industrial Economics,2016(2): 21-36. | |
6 | Storper M, Venables. A. J. Buzz: Face-to-face contact and the urban economy. Journal of Economic Geography. 2004, 4(4): 351-70. |
7 | Bernstein S, Giroud X, Townsend R R. The impact of venture capital monitoring. Journal of Finance, 2016, 71(4): 1591-1622. |
8 | 董艳梅, 朱英明. 高铁建设能否重塑中国的经济空间布局——基于就业、工资和经济增长的区域异质性视角. 中国工业经济, 2016(10): 92-108. |
Dong Y, Zhu Y. Can High-speed rail construction reshape the layout of China's economic space——Based on the perspective of regional heterogeneity of employment, wage and economic growth China. Industrial Economics, 2016(10): 92-108. | |
9 | Boarnet M G. Spillovers and the locational effects of public infrastructure. Journal of Regional Science, 1998, 38(3): 381-403. |
10 | Oosterhaven. J, Elhorst. J. P. Indirect economic benefits of transport infrastructure investments. Across the Border. Building Upon a Quarter Century of Transport Research in the Benelux, De Boeck, Antwerpen, 2003(8): 143-162. |
11 | Grossman G, Rossi-Hansberg E. Trading tasks: A simple theory of offshoring. American Economic Review, 1978, 98(5): 1978-1997. |
12 | Jaffe A, Trajtenberg M., Henderson R. Geographic localization of knowledge spillovers as evidenced by patent citations. Quarterly Journal of Economics, 1993, 108(3): 577-598. |
13 | Keebl D, Tyler P. Enterprising behavior and the urban-rural shift. Urban Studies, 1995, 32: 975-97. |
14 | Shirley C, Winston C. Firm Inventory behavior and the returns from highway infrastructure investments. Journal of Urban Economics, 2004, 55(2): 398-415. |
15 | Lin Yatang. Travel costs and urban specialization patterns: Evidence from China's high speed railway system. Journal of Urban Economics, 2017(98): 98-123. |
16 | Rouwendal J, Meijer E. Preferences for Housing, Jobs, and Commuting: A Mixed Logit Analysis. Journal of Regional Science, 2001(41): 475-505. |
17 | Romp W, Oosterhaven J. Indirect economic effects of new infrastructure: a comparison of dfutch high-speed rail variants. Appeared in Tijdschrift Economische en Sociate Geografie, 2003, 94(4): 439-452. |
18 | Lesage J, Pace R. Introduction to Spatial Econometrics. New York: CRC Press, 2009. |
19 | 孙枫, 汪德根, 牛玉. 高速铁路与汽车和航空的竞争格局分析. 地理研究, 2017, 36(1): 171-187. |
Sun F,Wang D,Niu Y. Competition patterns of high-speed rail versus highways and aviation. Geographical Research, 2017, 36(1): 171-187. | |
20 | 王鹤, 周少君. 城镇化影响房地产价格的"直接效应"与"间接效应"分析——基于我国地级市动态空间杜宾模型. 南开经济研究, 2017(2): 3-22. |
Wang H, Zhou S. The analysis of the "direct effect" and "indirect effect" of urbanization affects on real estate prices: Based on the dynamic spatial durbin model of prefecture-level cities. Nankai Economic Studies, 2017(2): 3-22. | |
21 | 苏屹, 安晓丽, 王心焕, 等. 人力资本投入对区域创新绩效的影响研究——基于知识产权保护制度门限回归. 科学学研究, 2017, 35(5): 771-781. |
Su Y,An X,Wang X, et, al. Impact of innovation human capital investment on innovation performance of regional innovation system based on intellectual property protection intensity threshold regression. Studies in Science of Science, 2017, 35(5): 771-781. |
[1] | 赵敏, 张俊, 李鹏. 泛亚高铁建设背景下中国西南-东南亚城市联系的多情景预测[J]. 世界地理研究, 2023, 32(3): 1-16. |
[2] | 陈奕嘉, 谭俊涛. 欧洲经济地理学区域创新政策研究进展[J]. 世界地理研究, 2022, 31(2): 259-269. |
[3] | 俞路, 闫歌. 京沪高铁站点对周边地区的经济带动效应研究——来自DMSP/OLS和NPP/VIIRS卫星灯光数据的证据[J]. 世界地理研究, 2022, 31(2): 305-316. |
[4] | 游悠洋, 杨浩然. 中国高铁开通地级市的房地产投资空间格局分析[J]. 世界地理研究, 2021, 30(5): 1073-1082. |
[5] | 黄丽, 林诗琦, 陈静. 中国区域创新能力与能源利用效率的时空 耦合协调分析[J]. 世界地理研究, 2020, 29(6): 1161-1171. |
[6] | 游悠洋, 杨浩然, 王姣娥. “高铁流”视角下的中国城市网络层级结构演变研究[J]. 世界地理研究, 2020, 29(4): 773-780. |
[7] | 刘大均, 陈君子, 贾垚焱. 高铁影响下成渝城市群旅游流网络的变化特征[J]. 世界地理研究, 2020, 29(3): 549-556. |
[8] | 朱邦耀, 白雪, 李国柱, 石丹. 中国创业板上市公司分布时空格局演变[J]. 世界地理研究, 2019, 28(3): 113-122. |
[9] | 刘明. 空间演化、空间溢出与兰州都市圈工业经济发展[J]. 世界地理研究, 2019, 28(1): 130-138. |
[10] | 李瑞 奚世军 吴晓俊 刘中正 龙家丽 何程栎 马荣 刘美云. 贵广高铁对沿线旅游城市可达性影响及地域结构系统构建[J]. 世界地理研究, 2017, 26(04): 62-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||