世界地理研究 ›› 2021, Vol. 30 ›› Issue (5): 1073-1082.DOI: 10.3969/j.issn.1004-9479.2021.05.2019561
收稿日期:
2019-11-11
修回日期:
2020-08-13
出版日期:
2021-09-30
发布日期:
2021-09-17
通讯作者:
杨浩然
作者简介:
游悠洋(1986-),女,讲师,博士,主要从事城市-区域经济研究,E-mail:85621767@qq.com。
基金资助:
Youyang YOU1(), Haoran YANG2,3()
Received:
2019-11-11
Revised:
2020-08-13
Online:
2021-09-30
Published:
2021-09-17
Contact:
Haoran YANG
摘要:
近些年我国高速铁路的建设,促进了制造业、生产性服务业的空间集聚。针对中国高铁建设是否也会促使房地产业空间集聚的问题,本文根据新经济地理学理论模型进行机理分析,采用2007—2017全国高铁列车班次数据,运用动态空间自回归模型(SAR)和空间杜宾模型(SDM)进行实证研究,得到以下结论:我国高铁快速发展改变了房地产市场潜力和房地产投资空间格局,出现房地产投资向核心城市聚集与向中小城市溢出同时发生现象。本区域高铁等交通基础设施改善,促进产业、人口和房地产投资在本区域集聚;跨区域高铁等交通基础设施改善,则会促进产业、人口和房地产投资的空间流动。房地产业在大城市过度集聚将产生拥挤效应,迫使房地产投资由核心大城市向高铁沿线中小城市扩散;具有优势地方资源的中小城市,高铁开通会加速房地产投资向其空间溢出。
游悠洋, 杨浩然. 中国高铁开通地级市的房地产投资空间格局分析[J]. 世界地理研究, 2021, 30(5): 1073-1082.
Youyang YOU, Haoran YANG. Analysis of spatial agglomeration of real estate investment based on China's high-speed rail cities[J]. World Regional Studies, 2021, 30(5): 1073-1082.
变量 | 期望 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|
房地产投资额(Ininvest) | 13.576 | 1.430 | 4.663 | 17.616 |
房地产从业人数(Inpop) | 0.519 | 0.658 | 0.012 | 1.661 |
城市节点强度(DIT) | 0.532 | 0.967 | 0 | 7.602 |
城市市场潜力(InMP) | 8.829 | 8.4530 | 2 | 0.501 |
城市人口规模(Incit) | 4.781 | 0.870 | 2.898 | 10.710 |
城市制造业规模(Inman) | 1.574 | 1.397 | 0.192 | 5.685 |
表1 样本的描述性统计
Tab.1 Descriptive statistics for variables
变量 | 期望 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|
房地产投资额(Ininvest) | 13.576 | 1.430 | 4.663 | 17.616 |
房地产从业人数(Inpop) | 0.519 | 0.658 | 0.012 | 1.661 |
城市节点强度(DIT) | 0.532 | 0.967 | 0 | 7.602 |
城市市场潜力(InMP) | 8.829 | 8.4530 | 2 | 0.501 |
城市人口规模(Incit) | 4.781 | 0.870 | 2.898 | 10.710 |
城市制造业规模(Inman) | 1.574 | 1.397 | 0.192 | 5.685 |
变量 | 方差膨胀值 | 1/方差膨胀值 |
---|---|---|
dit | 1.81 | 0.5510 |
inmp | 1.47 | 0.6824 |
incit | 1.69 | 0.5907 |
inman | 1.80 | 0.5543 |
方差膨胀值期望 | 1.69 |
表2 模型的方差膨胀因子
Tab.2 VIF for independent variables
变量 | 方差膨胀值 | 1/方差膨胀值 |
---|---|---|
dit | 1.81 | 0.5510 |
inmp | 1.47 | 0.6824 |
incit | 1.69 | 0.5907 |
inman | 1.80 | 0.5543 |
方差膨胀值期望 | 1.69 |
年份 | lninvest | Inpop | DIT | lnmp | Incit | lnman |
---|---|---|---|---|---|---|
2007 | 0.575*** | 0.378*** | 2.886*** | 3.049*** | 0.447*** | 0.545*** |
2008 | 0.518*** | 0.279*** | 2.074*** | 2.103*** | 0.280*** | 0.492*** |
2009 | 0.473*** | 0.280*** | 1.332*** | 1.649*** | 0.316*** | 0.432*** |
2010 | 0.378*** | 0.259*** | 1.133*** | 1.433*** | 0.240*** | 0.419*** |
2011 | 0.390*** | 0.237*** | 1.097*** | 1.191*** | 0.246*** | 0.420*** |
2012 | 0.372*** | 0.227*** | 0.946*** | 0.868*** | 0.208*** | 0.397*** |
2013 | 0.323*** | 0.209*** | 0.756*** | 0.920*** | 0.181*** | 0.361*** |
2014 | 0.287*** | 0.209*** | 0.614*** | 0.808*** | 0.158*** | 0.331*** |
2015 | 0.158*** | 0.082*** | 0.242*** | 0.328*** | 0.079*** | 0.189*** |
2016 | 0.115*** | 0.045* | 0.183*** | 0.284*** | 0.047** | 0.151*** |
2017 | 0.120*** | 0.052** | 0.172*** | 0.252*** | 0.050** | 0.153*** |
表3 2007—2017年各变量moran’s I指数值
Tab.3 Moran's I indexes for variables in 2007-2017
年份 | lninvest | Inpop | DIT | lnmp | Incit | lnman |
---|---|---|---|---|---|---|
2007 | 0.575*** | 0.378*** | 2.886*** | 3.049*** | 0.447*** | 0.545*** |
2008 | 0.518*** | 0.279*** | 2.074*** | 2.103*** | 0.280*** | 0.492*** |
2009 | 0.473*** | 0.280*** | 1.332*** | 1.649*** | 0.316*** | 0.432*** |
2010 | 0.378*** | 0.259*** | 1.133*** | 1.433*** | 0.240*** | 0.419*** |
2011 | 0.390*** | 0.237*** | 1.097*** | 1.191*** | 0.246*** | 0.420*** |
2012 | 0.372*** | 0.227*** | 0.946*** | 0.868*** | 0.208*** | 0.397*** |
2013 | 0.323*** | 0.209*** | 0.756*** | 0.920*** | 0.181*** | 0.361*** |
2014 | 0.287*** | 0.209*** | 0.614*** | 0.808*** | 0.158*** | 0.331*** |
2015 | 0.158*** | 0.082*** | 0.242*** | 0.328*** | 0.079*** | 0.189*** |
2016 | 0.115*** | 0.045* | 0.183*** | 0.284*** | 0.047** | 0.151*** |
2017 | 0.120*** | 0.052** | 0.172*** | 0.252*** | 0.050** | 0.153*** |
变量 | 动态时间固定效应 | 动态空间固定效应 | 动态时间空间双固定效应 | |||
---|---|---|---|---|---|---|
Ininvest | Inpop | Ininvest | Inpop | Ininvest | Inpop | |
DIT | -0.0152 (-0.29) | -0.0021 (-0.61) | 0.0533** (2.00) | -0.0210*** (-2.86) | 0.0661*** (3.08) | -0.0165** (-2.31) |
lnmp | -0.0004 (-0.12) | -0.0009** (-2.06) | -0.0026 (-0.90) | -0.0009 (-1.29) | -0.0008 (-0.41) | -0.0002 (-0.27) |
lncit | -0.0488 (-0.46) | -0.0210 (-0.87) | 0.3090** (1.97) | 0.0842* (1.71) | 0.3691*** (2.64) | 0.0942* (1.85) |
Inman | -0.1043 (-1.11) | 0.0056 (0.33) | 0.1646* (1.68) | 0.1904*** (3.72) | 0.1471* (1.77) | 0.1729*** (3.48) |
InInvest L1. | 1.0601*** (15.16) | 1.013*** (62.08) | 0.7295*** (5.48) | 0.8034*** (24.46) | 0.6310*** (4.23) | 0.7700*** (25.30) |
rho | -0.0732 (-0.44) | -0.0114 (-0.82) | 0.1058 (1.16) | 0.1991*** (5.68) | -0.1377** (-2.45) | -0.0462 (-0.88) |
Sigma2_e | 0.1877*** (2.59) | 0.0263*** (12.04) | 0.1577*** (2.86) | 0.0230*** (12.23) | 0.1470*** (2.89) | 0.0212*** (11.90) |
表4 房地产投资开发完成额的动态空间自回归模型
Tab.4 SAR for real estate investment
变量 | 动态时间固定效应 | 动态空间固定效应 | 动态时间空间双固定效应 | |||
---|---|---|---|---|---|---|
Ininvest | Inpop | Ininvest | Inpop | Ininvest | Inpop | |
DIT | -0.0152 (-0.29) | -0.0021 (-0.61) | 0.0533** (2.00) | -0.0210*** (-2.86) | 0.0661*** (3.08) | -0.0165** (-2.31) |
lnmp | -0.0004 (-0.12) | -0.0009** (-2.06) | -0.0026 (-0.90) | -0.0009 (-1.29) | -0.0008 (-0.41) | -0.0002 (-0.27) |
lncit | -0.0488 (-0.46) | -0.0210 (-0.87) | 0.3090** (1.97) | 0.0842* (1.71) | 0.3691*** (2.64) | 0.0942* (1.85) |
Inman | -0.1043 (-1.11) | 0.0056 (0.33) | 0.1646* (1.68) | 0.1904*** (3.72) | 0.1471* (1.77) | 0.1729*** (3.48) |
InInvest L1. | 1.0601*** (15.16) | 1.013*** (62.08) | 0.7295*** (5.48) | 0.8034*** (24.46) | 0.6310*** (4.23) | 0.7700*** (25.30) |
rho | -0.0732 (-0.44) | -0.0114 (-0.82) | 0.1058 (1.16) | 0.1991*** (5.68) | -0.1377** (-2.45) | -0.0462 (-0.88) |
Sigma2_e | 0.1877*** (2.59) | 0.0263*** (12.04) | 0.1577*** (2.86) | 0.0230*** (12.23) | 0.1470*** (2.89) | 0.0212*** (11.90) |
变量 | 时间固定效应 | 空间固定效应 | 时间空间双固定效应 | |||
---|---|---|---|---|---|---|
Ininvest | Inpop | Ininvest | Inpop | Ininvest | Inpop | |
DIT | 0.2450*** (4.25) | 0.0720*** (2.89) | 0.0906*** (2.61) | -0.0191 (-1.17) | 0.0562* (1.77) | -0.0319** (-2.10) |
lnmp | -0.0011 (-0.21) | 0.0016 (0.68) | 0.0053 (1.56) | 0.0056*** (3.70) | 0.0007 (0.23) | 0.0033** (2.48) |
lncit | 0.9414** (2.43) | 0.3912*** (2.88) | 0.8092*** (3.14) | 0.2950*** (2.67) | 0.5866** (2.31) | 0.1692 (1.63) |
Inman | 1.1323*** (6.72) | 0.6094*** (9.46) | 0.4401*** (3.43) | 0.4720*** (5.48) | 0.2741** (2.46) | 0.4022*** (4.69) |
W*DIT | -0.3890*** (-3.12) | -0.1253* (-1.81) | -0.1348 (-0.83) | 0.0011 (0.02) | -0.1246 (-0.85) | -0.0391 (-0.79) |
W*Inmp | 0.0430*** (3.98) | 0.0058* (0.94) | 0.0290*** (3.19) | 0.0112*** (3.40) | 0.0176** (2.14) | 0.0064* (1.80) |
W*Incit | 0.0698 (0.68) | -0.0397 (-0.79) | 0.2219 (0.34) | 0.5687** (2.08) | -0.4783 (-0.80) | 0.0704 (0.28) |
W*Inman | 0.0334 (0.13) | 0.0893 (0.85) | 0.6404** (1.97) | 0.4026** (2.16) | 0.1396 (0.44) | 0.1905 (1.14) |
rho | 0.0957 (0.86) | -0.0550 (-0.54) | 0.4890*** (8.95) | 0.2494*** (3.39) | -0.2040** (-2.53) | -0.1428 (-1.38) |
Sigma2_e | 0.5980*** (8.14) | 0.1219*** (10.65) | 0.2107*** (5.61) | 0.0370*** (10.20) | 0.1688*** (4.42) | 0.0327*** (10.20) |
表5 房地产投资开发完成额的空间杜宾模型结果表
Tab.5 SDM for real estate investment
变量 | 时间固定效应 | 空间固定效应 | 时间空间双固定效应 | |||
---|---|---|---|---|---|---|
Ininvest | Inpop | Ininvest | Inpop | Ininvest | Inpop | |
DIT | 0.2450*** (4.25) | 0.0720*** (2.89) | 0.0906*** (2.61) | -0.0191 (-1.17) | 0.0562* (1.77) | -0.0319** (-2.10) |
lnmp | -0.0011 (-0.21) | 0.0016 (0.68) | 0.0053 (1.56) | 0.0056*** (3.70) | 0.0007 (0.23) | 0.0033** (2.48) |
lncit | 0.9414** (2.43) | 0.3912*** (2.88) | 0.8092*** (3.14) | 0.2950*** (2.67) | 0.5866** (2.31) | 0.1692 (1.63) |
Inman | 1.1323*** (6.72) | 0.6094*** (9.46) | 0.4401*** (3.43) | 0.4720*** (5.48) | 0.2741** (2.46) | 0.4022*** (4.69) |
W*DIT | -0.3890*** (-3.12) | -0.1253* (-1.81) | -0.1348 (-0.83) | 0.0011 (0.02) | -0.1246 (-0.85) | -0.0391 (-0.79) |
W*Inmp | 0.0430*** (3.98) | 0.0058* (0.94) | 0.0290*** (3.19) | 0.0112*** (3.40) | 0.0176** (2.14) | 0.0064* (1.80) |
W*Incit | 0.0698 (0.68) | -0.0397 (-0.79) | 0.2219 (0.34) | 0.5687** (2.08) | -0.4783 (-0.80) | 0.0704 (0.28) |
W*Inman | 0.0334 (0.13) | 0.0893 (0.85) | 0.6404** (1.97) | 0.4026** (2.16) | 0.1396 (0.44) | 0.1905 (1.14) |
rho | 0.0957 (0.86) | -0.0550 (-0.54) | 0.4890*** (8.95) | 0.2494*** (3.39) | -0.2040** (-2.53) | -0.1428 (-1.38) |
Sigma2_e | 0.5980*** (8.14) | 0.1219*** (10.65) | 0.2107*** (5.61) | 0.0370*** (10.20) | 0.1688*** (4.42) | 0.0327*** (10.20) |
1 | 游悠洋. 中国高铁发展对房地产投资空间效应的影响研究. 昆明:云南财经大学,2019. |
You Y. Research on the impact of China's high-speed rail development on the spatial effect of real estate investment. Kunming: Yunnan University of Finance and Economics. 2019 | |
2 | Jia S, Zhou C, Qin C. No difference in effect of high-speed rail on regional economic growth based on match effect perspective?. Transportation Research Part A Policy and Practice, 2017, (106):144-157. |
3 | Vickerman R. Can high-speed rail have a transformative effect on the economy?Transport Policy, 2017, 62:31-37. |
4 | Lin Y. Travel costs and urban specialization patterns:Evidence from China's high speed railway system. Journal of Urban Economics, 2016, 98:98-123. |
5 | Hu W, Xu H. The impacts of high-speed rails on the accessibility and the spatial pattern of regional economic development in china. Human Geography, 2017, 32(01):99-108. |
6 | Wu Q T, Fan J, Zhang H, et al. Spatial effects of different fixed links on accessibility and regional economic linkage in Pearl River Delta. Geographical Research,2015,34(11):2061-2072. |
7 | Wang Z, Xu G, Bao C, et al. Spatial and economic effects of the Bohai Strait Cross-Sea Channel on the transportation accessibility in China. Applied Geography, 2017, (83):86-99. |
8 | Wu W, Liang Y, Wu D. Evaluating the impact of China's rail network expansions on local accessibility: A market potential approach. Sustainability, 2016, 8(6):512. |
9 | 张洪,游悠洋,丁江. 中国高铁建设促进了房地产投资空间集聚吗?——基于210个开通高铁地级市空间面板模型分析.城市与环境研究,2020(02):24-37. |
Zhang H. You Y. Ding J. Does China's high-speed rail construction promote spatial agglomeration of real estate investment? An analysis based on the spatial panel model of 210 prefecture-level cities opened high-speed railway. Urban and Environmental Studies, 2020(02),24-37. doi:CNKI:SUN:CSHY.0.2020-02-002 | |
10 | Yang H R, Wang C, You Y Y. The Spatial Structure Evolution of China's High-Speed Rail Network and Its Impacts on Real Estate Investment. Applied Spatial Analysis and Policy, 2021. |
11 | Chen C L, Vickerman R. Can transport infrastructure change regions' economic fortunes?Some evidence from Europe and China. Regional Studies, 2017, 51(1):144-160. |
12 | Cheng Y S, Loo B P Y, Vickerman R. High-speed rail networks, economic integration and regional specialisation in China and Europe. Travel Behaviour& Society, 2015, 2(1):1-14. |
13 | 卢福财,詹先志. 高速铁路对沿线城市工业集聚的影响研究——基于中部城市面板数据的实证分析. 当代财经, 2017(11):88-99. |
Lu F, Zhan X. Study on the impact of high-speed railway on industrial agglomeration of cities along the line -- An empirical analysis based on panel data of central cities. Contemporary Finance & Economics.2017 (11):88-99 | |
14 | 覃成林,杨晴晴. 高速铁路对生产性服务业空间格局变迁的影响. 经济地理, 2017(02):90-97. |
Qin C, Yang Q. The impact of high-speed railway on the spatial pattern change of producer services. Journal of Economic Geography.2017(02):90-97. | |
15 | Blanquart C, Koning M. The local economic impacts of high-speed railways: theories and facts. European Transport Research Review, 2017, 9(2):60-65. |
16 | 李红昌,Tjia Linda,胡顺香. 中国高速铁路对沿线城市经济集聚与均等化的影响. 数量经济技术经济研究,2016(11):127-143. |
Li H, Tjia Linda, Hu S. The impact of China's high-speed railway on economic agglomeration and equalization of cities along the line. Quantitative& technical economics. 2016(11):127-143. | |
17 | Chen Z, Haynes K E. Impact of high-speed rail on regional economic disparity in China. Journal of Transport Geography, 2017, 65(dec.):80-91. |
18 | 姜博,初楠臣,王媛,等. 高速铁路对城市与区域空间影响的研究述评与展望. 人文地理, 2016(1):16-25. |
Jiang B, Chu N, Wang Y, et al. Review and Prospect of research on the impact of high-speed railway on urban and regional space. Human geography. 2016(1):16-25 | |
19 | 高翔,龙小宁,杨广亮. 交通基础设施与服务业发展——来自县级高速公路和第二次经济普查企业数据的证据. 管理世界, 2015(8):81-96. |
Gao X, Long X, Yang G. Transportation infrastructure and service industry development -- Evidence from county-level Expressway and enterprise data of the second economic census. Management World. 2015 (8):81-96 | |
20 | 邓涛涛,王丹丹,程少勇. 高速铁路对城市服务业集聚的影响. 财经研究, 2017, 43(07):119-132. |
Deng T, Wang D, Cheng S. Impact of high speed railway on urban service industry agglomeration. Journal of Finance and Economics. 2017, 43(07):119-132 | |
21 | Chen Z H, Haynes K E. Impact of high-speed rail on international tourism demand in China. Applied Economics Letters, 2015, 22(1-3):57-60. |
22 | 郭璐筠. 沪宁高铁对沿线城市旅游产业集聚水平的影响. 特区经济, 2016(11):47-49. |
Guo L. Impact of Shanghai Nanjing high speed railway on the agglomeration level of tourism industry in cities along the line. Special zone economy. 2016(11):47-49 | |
23 | Guo J, Wang S, Li B, et al. The spatial effect of Harbin-Dalian High-speed Rail to the northeast city tourism economic link. Scientia Geographica Sinica, 2016, 36(4):521-529. |
24 | Chen Z, Haynes K E. Impact of high speed rail on housing values: an observation from the Beijing–Shanghai line. Journal of Transport Geography, 2015, 43(feb.):91-100. |
25 | Levkovich O, Rouwendal J, Marwijk R V. The effects of highway development on housing prices. Transportation, 2015, 43(2):379-405. |
26 | Wang L, Wang H. The Impact of Urban Rail Transit on Residential Property Values: An Empirical Analysis of Shanghai Housing Market. The Chinese Economy, 2010,43(2):33-52. |
27 | 焦敬娟,王姣娥,金凤君,等. 高速铁路对城市网络结构的影响研究--基于铁路客运班列分析.地理学报, 2016, 71(02):265-280. |
Jiao J, Wang J, Jin F, et al. Impact of high-speed rail on inter-city network based on the passenger train network in China,2003-2013. ACTA Geographica SINICA,2016,71(02):265-280 | |
28 | Yang H R, Dijst M, Witte P, et al. The spatial structure of high speed railways and urban networks in China: A flow approach. Tijdschriftvooreconomischeensocialegeografie, 2018, (109):109-128. |
29 | 胡煜,李红昌. 交通枢纽等级的测度及其空间溢出效应——基于中国城市面板数据的空间计量分析. 中国工业经济, 2015(5):32-43. |
Hu Y, Li H. Measurement of transportation hub level and its spatial spillover effect -- spatial econometric analysis based on Chinese urban panel data. China's industrial economy. 2015(5):32-43 | |
30 | Ke X, Chen H, Hong Y, et al. Do China's high-speed-rail projects promote local economy?—New evidence from a panel data approach. China Economic Review, 2017 (44):203-226. |
[1] | 赵敏, 张俊, 李鹏. 泛亚高铁建设背景下中国西南-东南亚城市联系的多情景预测[J]. 世界地理研究, 2023, 32(3): 1-16. |
[2] | 徐婧雅, 宋周莺. 中国手机出口的时空格局演变及其影响因素[J]. 世界地理研究, 2023, 32(3): 17-27. |
[3] | 韦汝虹, 金李, 方达. 商品住宅价格空间溢出效应测度及其影响 因素分析[J]. 世界地理研究, 2023, 32(1): 117-129. |
[4] | 王孟林, 陈瑛, 张婷婷. 中国对美国州层面直接投资时空演变与驱动因素探究[J]. 世界地理研究, 2023, 32(1): 54-66. |
[5] | 黄普基, 郭杰, 周晴. 韩国公寓更新中的居住形式与居民政治倾向关系研究[J]. 世界地理研究, 2022, 31(6): 1251-1260. |
[6] | 杨人懿, 钟昌标, 杨子生, 刘凤莲, 彭海英. 西南喀斯特石漠化深度贫困县的贫困影响 因素分析[J]. 世界地理研究, 2022, 31(6): 1298-1309. |
[7] | 孟德友, 高超, 陈层层. 郑州市主城区汽车服务业集聚及与交通的 空间关联[J]. 世界地理研究, 2022, 31(5): 1021-1033. |
[8] | 张筱娟, 汤琪凤, 廖紫薇. 江苏省研发企业空间格局演化及其影响因素分析[J]. 世界地理研究, 2022, 31(5): 1034-1045. |
[9] | 夏启繁. 中国对RCEP国家能源投资布局与风险的时空特征[J]. 世界地理研究, 2022, 31(4): 814-826. |
[10] | 俞路, 闫歌. 京沪高铁站点对周边地区的经济带动效应研究——来自DMSP/OLS和NPP/VIIRS卫星灯光数据的证据[J]. 世界地理研究, 2022, 31(2): 305-316. |
[11] | 殷为华, 陈晓玲. 长三角城市群电子信息制造业的空间集聚及生产绩效研究[J]. 世界地理研究, 2021, 30(6): 1241-1252. |
[12] | 王淑芳, 闫语欣, 于娜. “一带一路”沿线国家投资悖论的形成机理研究[J]. 世界地理研究, 2021, 30(4): 781-791. |
[13] | 姚峪岩, 张翼飞, 金紫洋, 蒋烨. “一带一路”绿色贸易合作与竞争格局研究[J]. 世界地理研究, 2021, 30(4): 792-801. |
[14] | 韩梦瑶, 刘卫东, 刘慧. 中国跨境风电项目的建设模式、梯度转移及减排潜力研究[J]. 世界地理研究, 2021, 30(3): 490-500. |
[15] | 刘国燕, 李涛. 高铁影响下的中国区域创新时空演化与效应分解[J]. 世界地理研究, 2021, 30(2): 355-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||