World Regional Studies ›› 2022, Vol. 31 ›› Issue (5): 953-966.DOI: 10.3969/j.issn.1004-9479.2022.05.2021112
Previous Articles Next Articles
Received:
2021-02-14
Revised:
2021-05-26
Online:
2022-09-15
Published:
2022-09-15
Contact:
Shengjun ZHU
通讯作者:
朱晟君
作者简介:
赵琪(1995-),女,硕士研究生,主要从事经济地理与产业动态研究,E-mail:zhaoqi7@pku.edu.cn。
基金资助:
Qi ZHAO, Shengjun ZHU. The effect of technological relatedness and land finance on regional industrial evolution[J]. World Regional Studies, 2022, 31(5): 953-966.
赵琪, 朱晟君. 技术关联与土地财政对区域产业演化的影响[J]. 世界地理研究, 2022, 31(5): 953-966.
Add to citation manager EndNote|Ris|BibTeX
URL: https://sjdlyj.ecnu.edu.cn/EN/10.3969/j.issn.1004-9479.2022.05.2021112
变量 | 指标 | 计量方式 |
---|---|---|
nsop | 市场化 | 非国有制企业产值占总产值的比重 |
fdip | 全球化 | FDI占GDP的比重 |
pgdp | 经济发展水平 | 人均GDP |
wage | 劳动力素质 | 平均工资 |
inno | 本地创新能力 | 复旦大学《中国城市和产业创新力报告》 |
labo | 劳动力数量 | 城市单位从业人口与私营及个体从业人口总和 |
luse | 土地利用效率 | 单位建成区面积产出的二、三产业总产值 |
urba | 土地供给存量 | 城市建成区面积 |
Tab.1 City control variables
变量 | 指标 | 计量方式 |
---|---|---|
nsop | 市场化 | 非国有制企业产值占总产值的比重 |
fdip | 全球化 | FDI占GDP的比重 |
pgdp | 经济发展水平 | 人均GDP |
wage | 劳动力素质 | 平均工资 |
inno | 本地创新能力 | 复旦大学《中国城市和产业创新力报告》 |
labo | 劳动力数量 | 城市单位从业人口与私营及个体从业人口总和 |
luse | 土地利用效率 | 单位建成区面积产出的二、三产业总产值 |
urba | 土地供给存量 | 城市建成区面积 |
时期 | 样本量 | 平均值 | 中位数 | 标准差. | 最小值 | 最大值 |
---|---|---|---|---|---|---|
2006—2018 | 2 240 | 38.37972 | 27.43009 | 41.19316 | 0.00036 | 438.6201 |
2006—2010 | 654 | 39.3032 | 26.49436 | 43.83243 | 0.000647 | 438.6201 |
2011—2015 | 995 | 34.39605 | 27.88539 | 30.9323 | 0.013287 | 222.1311 |
Tab.2 Land finance level difference in two stages
时期 | 样本量 | 平均值 | 中位数 | 标准差. | 最小值 | 最大值 |
---|---|---|---|---|---|---|
2006—2018 | 2 240 | 38.37972 | 27.43009 | 41.19316 | 0.00036 | 438.6201 |
2006—2010 | 654 | 39.3032 | 26.49436 | 43.83243 | 0.000647 | 438.6201 |
2011—2015 | 995 | 34.39605 | 27.88539 | 30.9323 | 0.013287 | 222.1311 |
变量 | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|---|---|---|---|
landfin | -0.195*** | -0.216*** | -0.685*** | -0.222*** | -0.255*** | -0.667*** | |||
(0.0519) | (0.0523) | (0.162) | (0.0619) | (0.0624) | (0.195) | ||||
density | 5.618*** | 6.692*** | 5.968*** | 5.617*** | 6.560*** | 5.889*** | |||
(0.280) | (0.336) | (0.410) | (0.351) | (0.413) | (0.510) | ||||
landsup | 10.85*** | 11.47*** | 9.519*** | 9.809*** | 9.665*** | ||||
(2.259) | (2.386) | (2.250) | (2.384) | (2.383) | |||||
landfin×density | 1.727*** | 1.497** | |||||||
(0.563) | (0.669) | ||||||||
nsop | -0.933*** | -1.484*** | -0.868*** | -1.949*** | -1.934*** | -1.337*** | -1.753*** | -2.504*** | -2.479*** |
(0.281) | (0.230) | (0.271) | (0.289) | (0.289) | (0.325) | (0.281) | (0.338) | (0.338) | |
fdip | 0.946 | 2.791* | 3.148* | 0.0844 | 0.296 | 1.159 | 3.083* | 0.295 | 0.477 |
(1.823) | (1.503) | (1.798) | (1.823) | (1.826) | (2.098) | (1.799) | (2.096) | (2.100) | |
pgdp | 0.106* | -0.0124 | 0.0355 | 0.0841 | 0.0868 | 0.122* | 0.0237 | 0.107 | 0.111 |
(0.0597) | (0.0449) | (0.0563) | (0.0601) | (0.0602) | (0.0713) | (0.0566) | (0.0717) | (0.0717) | |
wage | 0.359*** | 0.552*** | 0.321*** | 0.426*** | 0.450*** | 0.216** | 0.401*** | 0.286*** | 0.304*** |
(0.0906) | (0.0677) | (0.0824) | (0.0914) | (0.0917) | (0.109) | (0.0830) | (0.110) | (0.110) | |
labo | 0.697 | -0.454 | -1.100 | 0.652 | 0.377 | 0.232 | -1.057 | 0.544 | 0.316 |
(0.934) | (0.844) | (0.987) | (0.940) | (0.944) | (1.073) | (0.992) | (1.079) | (1.084) | |
inno | -0.0136 | 0.0101 | 0.0412 | -0.000254 | -0.00310 | 0.0328 | 0.0486* | 0.0398 | 0.0380 |
(0.0260) | (0.0259) | (0.0285) | (0.0266) | (0.0266) | (0.0292) | (0.0289) | (0.0297) | (0.0298) | |
luse | -0.741 | -0.802 | -0.357 | -0.0336 | -0.350 | -0.568 | -0.280 | 0.157 | -0.0953 |
(1.318) | (1.031) | (1.209) | (1.331) | (1.338) | (1.472) | (1.215) | (1.483) | (1.490) | |
urba | 0.742 | 1.170 | 1.786* | 1.350 | 1.350 | 1.567 | 1.973* | 2.003* | 2.012* |
(0.992) | (0.892) | (1.050) | (0.989) | (0.987) | (1.149) | (1.042) | (1.142) | (1.140) | |
i.city | included | included | included | included | included | included | included | included | included |
_cons | -2.107*** | -3.285*** | -1.934*** | -3.408*** | -3.219*** | -1.611*** | -2.955*** | -2.791*** | -2.630*** |
(0.350) | (0.296) | (0.348) | (0.360) | (0.365) | (0.410) | (0.356) | (0.420) | (0.426) | |
N | 40327 | 54674 | 36451 | 40327 | 40327 | 28332 | 36451 | 28332 | 28332 |
Tab.3 Nationwide model result
变量 | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|---|---|---|---|
landfin | -0.195*** | -0.216*** | -0.685*** | -0.222*** | -0.255*** | -0.667*** | |||
(0.0519) | (0.0523) | (0.162) | (0.0619) | (0.0624) | (0.195) | ||||
density | 5.618*** | 6.692*** | 5.968*** | 5.617*** | 6.560*** | 5.889*** | |||
(0.280) | (0.336) | (0.410) | (0.351) | (0.413) | (0.510) | ||||
landsup | 10.85*** | 11.47*** | 9.519*** | 9.809*** | 9.665*** | ||||
(2.259) | (2.386) | (2.250) | (2.384) | (2.383) | |||||
landfin×density | 1.727*** | 1.497** | |||||||
(0.563) | (0.669) | ||||||||
nsop | -0.933*** | -1.484*** | -0.868*** | -1.949*** | -1.934*** | -1.337*** | -1.753*** | -2.504*** | -2.479*** |
(0.281) | (0.230) | (0.271) | (0.289) | (0.289) | (0.325) | (0.281) | (0.338) | (0.338) | |
fdip | 0.946 | 2.791* | 3.148* | 0.0844 | 0.296 | 1.159 | 3.083* | 0.295 | 0.477 |
(1.823) | (1.503) | (1.798) | (1.823) | (1.826) | (2.098) | (1.799) | (2.096) | (2.100) | |
pgdp | 0.106* | -0.0124 | 0.0355 | 0.0841 | 0.0868 | 0.122* | 0.0237 | 0.107 | 0.111 |
(0.0597) | (0.0449) | (0.0563) | (0.0601) | (0.0602) | (0.0713) | (0.0566) | (0.0717) | (0.0717) | |
wage | 0.359*** | 0.552*** | 0.321*** | 0.426*** | 0.450*** | 0.216** | 0.401*** | 0.286*** | 0.304*** |
(0.0906) | (0.0677) | (0.0824) | (0.0914) | (0.0917) | (0.109) | (0.0830) | (0.110) | (0.110) | |
labo | 0.697 | -0.454 | -1.100 | 0.652 | 0.377 | 0.232 | -1.057 | 0.544 | 0.316 |
(0.934) | (0.844) | (0.987) | (0.940) | (0.944) | (1.073) | (0.992) | (1.079) | (1.084) | |
inno | -0.0136 | 0.0101 | 0.0412 | -0.000254 | -0.00310 | 0.0328 | 0.0486* | 0.0398 | 0.0380 |
(0.0260) | (0.0259) | (0.0285) | (0.0266) | (0.0266) | (0.0292) | (0.0289) | (0.0297) | (0.0298) | |
luse | -0.741 | -0.802 | -0.357 | -0.0336 | -0.350 | -0.568 | -0.280 | 0.157 | -0.0953 |
(1.318) | (1.031) | (1.209) | (1.331) | (1.338) | (1.472) | (1.215) | (1.483) | (1.490) | |
urba | 0.742 | 1.170 | 1.786* | 1.350 | 1.350 | 1.567 | 1.973* | 2.003* | 2.012* |
(0.992) | (0.892) | (1.050) | (0.989) | (0.987) | (1.149) | (1.042) | (1.142) | (1.140) | |
i.city | included | included | included | included | included | included | included | included | included |
_cons | -2.107*** | -3.285*** | -1.934*** | -3.408*** | -3.219*** | -1.611*** | -2.955*** | -2.791*** | -2.630*** |
(0.350) | (0.296) | (0.348) | (0.360) | (0.365) | (0.410) | (0.356) | (0.420) | (0.426) | |
N | 40327 | 54674 | 36451 | 40327 | 40327 | 28332 | 36451 | 28332 | 28332 |
变量 | 东部 | 中部 | 西部 | 东北 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
landfin | -0.0288 | -0.134*** | 0.317*** | 0.319*** | -265.8* | -279.7* | 0.569** | 0.644** | ||||
(0.0412) | (0.0417) | (0.0772) | (0.0775) | (154.7) | (156.0) | (0.256) | (0.258) | |||||
density | 3.803*** | 4.395*** | -0.227 | -0.150 | 5.882*** | 7.405*** | 1.712*** | 3.460*** | ||||
(0.241) | (0.267) | (0.340) | (0.489) | (1.694) | (2.828) | (0.512) | (0.667) | |||||
nsop | -1.392*** | -1.286*** | -1.422*** | -0.412** | 0.114 | -0.393** | 1.581 | -1.672* | 2.029 | -0.463 | -0.266 | -1.116*** |
(0.127) | (0.109) | (0.132) | (0.186) | (0.137) | (0.198) | (2.591) | (0.885) | (2.683) | (0.291) | (0.222) | (0.320) | |
fdip | -0.961 | -3.798*** | -3.793*** | -8.014*** | -0.514 | -7.933*** | 278.5 | -3.500 | 301.3* | 1.617 | -4.107** | -0.232 |
(0.775) | (0.737) | (0.808) | (1.873) | (1.363) | (1.911) | (170.5) | (14.65) | (173.8) | (2.174) | (1.758) | (2.247) | |
pgdp | 0.00611 | 0.0118 | 0.00782 | -0.169*** | -0.111*** | -0.168*** | -0.829*** | -0.0737 | -0.657** | -0.196*** | -0.126*** | -0.159*** |
(0.0139) | (0.0127) | (0.0142) | (0.0460) | (0.0350) | (0.0461) | (0.306) | (0.0751) | (0.317) | (0.0533) | (0.0402) | (0.0544) | |
wage | 0.209*** | 0.170*** | 0.235*** | 0.458*** | 0.368*** | 0.453*** | 1.498 | 0.824*** | 0.651 | 0.616*** | 0.578*** | 0.589*** |
(0.0403) | (0.0325) | (0.0403) | (0.0660) | (0.0499) | (0.0680) | (2.990) | (0.276) | (3.081) | (0.133) | (0.0990) | (0.136) | |
inno | 0.0610*** | 0.102*** | 0.0950*** | -0.832*** | -0.333*** | -0.828*** | -8.348 | 5.745 | -2.023 | -0.212 | 0.460** | -0.146 |
(0.0148) | (0.0153) | (0.0160) | (0.132) | (0.116) | (0.134) | (23.97) | (5.636) | (24.70) | (0.278) | (0.219) | (0.274) | |
labo | -2.083*** | -3.378*** | -3.243*** | 8.490*** | 2.122* | 8.476*** | 57.28 | -0.201 | 65.88 | -1.844 | -0.638 | -2.586* |
(0.315) | (0.310) | (0.333) | (1.570) | (1.100) | (1.571) | (43.13) | (4.603) | (44.43) | (1.404) | (1.283) | (1.390) | |
luse | -1.307*** | -1.592*** | -1.655*** | -3.757*** | -1.212** | -3.700*** | 61.67 | 0.693 | 63.82 | 0.134 | -5.390*** | -0.381 |
(0.281) | (0.260) | (0.295) | (1.392) | (0.562) | (1.403) | (47.64) | (3.946) | (48.77) | (1.944) | (1.541) | (1.948) | |
urba | -0.814*** | -0.978*** | -1.172*** | -2.880*** | -1.509** | -2.843*** | -37.71 | -11.42 | -53.34 | -0.718 | -4.375*** | -1.666 |
(0.162) | (0.156) | (0.168) | (0.939) | (0.671) | (0.941) | (53.48) | (7.928) | (55.00) | (1.076) | (0.890) | (1.082) | |
i.city | included | included | included | included | included | included | included | included | included | included | included | included |
_cons | -0.389*** | -1.018*** | -1.147*** | -1.340*** | -1.669*** | -1.323*** | -13.18*** | -2.028* | -12.57*** | -1.602*** | -1.248*** | -1.760*** |
(0.138) | (0.116) | (0.150) | (0.241) | (0.170) | (0.246) | (4.570) | (1.075) | (4.618) | (0.378) | (0.253) | (0.387) | |
N | 27915 | 33428 | 27915 | 8357 | 15222 | 8357 | 400 | 848 | 400 | 4408 | 6775 | 4408 |
Tab.4 The influence of subregional land finance and technology linkage on the path-creation of regional industries
变量 | 东部 | 中部 | 西部 | 东北 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
landfin | -0.0288 | -0.134*** | 0.317*** | 0.319*** | -265.8* | -279.7* | 0.569** | 0.644** | ||||
(0.0412) | (0.0417) | (0.0772) | (0.0775) | (154.7) | (156.0) | (0.256) | (0.258) | |||||
density | 3.803*** | 4.395*** | -0.227 | -0.150 | 5.882*** | 7.405*** | 1.712*** | 3.460*** | ||||
(0.241) | (0.267) | (0.340) | (0.489) | (1.694) | (2.828) | (0.512) | (0.667) | |||||
nsop | -1.392*** | -1.286*** | -1.422*** | -0.412** | 0.114 | -0.393** | 1.581 | -1.672* | 2.029 | -0.463 | -0.266 | -1.116*** |
(0.127) | (0.109) | (0.132) | (0.186) | (0.137) | (0.198) | (2.591) | (0.885) | (2.683) | (0.291) | (0.222) | (0.320) | |
fdip | -0.961 | -3.798*** | -3.793*** | -8.014*** | -0.514 | -7.933*** | 278.5 | -3.500 | 301.3* | 1.617 | -4.107** | -0.232 |
(0.775) | (0.737) | (0.808) | (1.873) | (1.363) | (1.911) | (170.5) | (14.65) | (173.8) | (2.174) | (1.758) | (2.247) | |
pgdp | 0.00611 | 0.0118 | 0.00782 | -0.169*** | -0.111*** | -0.168*** | -0.829*** | -0.0737 | -0.657** | -0.196*** | -0.126*** | -0.159*** |
(0.0139) | (0.0127) | (0.0142) | (0.0460) | (0.0350) | (0.0461) | (0.306) | (0.0751) | (0.317) | (0.0533) | (0.0402) | (0.0544) | |
wage | 0.209*** | 0.170*** | 0.235*** | 0.458*** | 0.368*** | 0.453*** | 1.498 | 0.824*** | 0.651 | 0.616*** | 0.578*** | 0.589*** |
(0.0403) | (0.0325) | (0.0403) | (0.0660) | (0.0499) | (0.0680) | (2.990) | (0.276) | (3.081) | (0.133) | (0.0990) | (0.136) | |
inno | 0.0610*** | 0.102*** | 0.0950*** | -0.832*** | -0.333*** | -0.828*** | -8.348 | 5.745 | -2.023 | -0.212 | 0.460** | -0.146 |
(0.0148) | (0.0153) | (0.0160) | (0.132) | (0.116) | (0.134) | (23.97) | (5.636) | (24.70) | (0.278) | (0.219) | (0.274) | |
labo | -2.083*** | -3.378*** | -3.243*** | 8.490*** | 2.122* | 8.476*** | 57.28 | -0.201 | 65.88 | -1.844 | -0.638 | -2.586* |
(0.315) | (0.310) | (0.333) | (1.570) | (1.100) | (1.571) | (43.13) | (4.603) | (44.43) | (1.404) | (1.283) | (1.390) | |
luse | -1.307*** | -1.592*** | -1.655*** | -3.757*** | -1.212** | -3.700*** | 61.67 | 0.693 | 63.82 | 0.134 | -5.390*** | -0.381 |
(0.281) | (0.260) | (0.295) | (1.392) | (0.562) | (1.403) | (47.64) | (3.946) | (48.77) | (1.944) | (1.541) | (1.948) | |
urba | -0.814*** | -0.978*** | -1.172*** | -2.880*** | -1.509** | -2.843*** | -37.71 | -11.42 | -53.34 | -0.718 | -4.375*** | -1.666 |
(0.162) | (0.156) | (0.168) | (0.939) | (0.671) | (0.941) | (53.48) | (7.928) | (55.00) | (1.076) | (0.890) | (1.082) | |
i.city | included | included | included | included | included | included | included | included | included | included | included | included |
_cons | -0.389*** | -1.018*** | -1.147*** | -1.340*** | -1.669*** | -1.323*** | -13.18*** | -2.028* | -12.57*** | -1.602*** | -1.248*** | -1.760*** |
(0.138) | (0.116) | (0.150) | (0.241) | (0.170) | (0.246) | (4.570) | (1.075) | (4.618) | (0.378) | (0.253) | (0.387) | |
N | 27915 | 33428 | 27915 | 8357 | 15222 | 8357 | 400 | 848 | 400 | 4408 | 6775 | 4408 |
变量 | 东部 | 中部 | 西部 | 东北 | ||||
---|---|---|---|---|---|---|---|---|
landfin | -0.156*** | -0.438*** | 0.283*** | 1.418*** | -194.1 | -397.5 | 0.602** | -1.190 |
(0.0494) | (0.169) | (0.0914) | (0.351) | (209.2) | (342.7) | (0.291) | (1.036) | |
density | 4.225*** | 3.747*** | -0.717 | 1.395* | 4.349 | 1.430 | 3.579*** | 3.212*** |
(0.323) | (0.426) | (0.590) | (0.845) | (4.313) | (5.789) | (0.822) | (0.852) | |
landsup | 17.06*** | 16.97*** | 3.387 | 3.535 | -10.27 | -7.978 | 10.90** | 10.91** |
(3.630) | (3.626) | (5.604) | (5.742) | (42.08) | (42.80) | (4.536) | (4.543) | |
landfin×density | 0.969* | -5.348*** | 1090.0 | 9.341* | ||||
(0.558) | (1.596) | (1345.0) | (5.130) | |||||
nsop | -1.789*** | -1.740*** | -0.286 | -0.393 | 1.668 | 1.803 | -1.025*** | -0.919** |
(0.159) | (0.161) | (0.239) | (0.244) | (3.510) | (3.544) | (0.398) | (0.405) | |
fdip | -1.997** | -1.912* | -9.764*** | -10.17*** | 79.92 | 89.96 | -0.454 | -0.502 |
(0.979) | (0.981) | (2.216) | (2.229) | (240.0) | (243.5) | (2.545) | (2.545) | |
pgdp | 0.0255 | 0.0269 | -0.131** | -0.123** | -0.931** | -0.920** | -0.150** | -0.109 |
(0.0167) | (0.0166) | (0.0544) | (0.0539) | (0.440) | (0.434) | (0.0714) | (0.0762) | |
wage | 0.175*** | 0.173*** | 0.418*** | 0.398*** | 3.943 | 3.660 | 0.606*** | 0.607*** |
(0.0476) | (0.0477) | (0.0862) | (0.0872) | (4.322) | (4.332) | (0.170) | (0.169) | |
inno | 0.129*** | 0.125*** | -0.630*** | -0.488*** | -27.14 | -24.25 | -0.213 | -0.307 |
(0.0189) | (0.0195) | (0.147) | (0.146) | (33.41) | (33.54) | (0.328) | (0.334) | |
labo | -3.549*** | -3.576*** | 8.132*** | 9.240*** | -11.95 | -10.89 | -3.134* | -3.763** |
(0.392) | (0.391) | (1.822) | (1.885) | (64.94) | (65.38) | (1.679) | (1.691) | |
luse | -1.464*** | -1.442*** | -4.629*** | -5.135*** | 27.91 | 34.61 | -1.591 | -1.581 |
(0.347) | (0.346) | (1.643) | (1.676) | (64.29) | (65.24) | (2.895) | (2.911) | |
urba | -1.173*** | -1.135*** | -3.371*** | -4.195*** | 38.92 | 35.26 | -0.943 | -0.501 |
(0.209) | (0.209) | (1.082) | (1.119) | (74.30) | (75.13) | (1.315) | (1.342) | |
i.city | included | included | included | included | included | included | included | included |
_cons | -0.753*** | -0.671*** | -0.952*** | -1.255*** | -16.30** | -15.75** | -1.870*** | -1.973*** |
(0.184) | (0.190) | (0.299) | (0.308) | (6.369) | (6.366) | (0.474) | (0.475) | |
N | 19634 | 19634 | 5748 | 5748 | 218 | 218 | 3183 | 3183 |
Tab.5 Impact of industrial land supply growth on regional industrial development
变量 | 东部 | 中部 | 西部 | 东北 | ||||
---|---|---|---|---|---|---|---|---|
landfin | -0.156*** | -0.438*** | 0.283*** | 1.418*** | -194.1 | -397.5 | 0.602** | -1.190 |
(0.0494) | (0.169) | (0.0914) | (0.351) | (209.2) | (342.7) | (0.291) | (1.036) | |
density | 4.225*** | 3.747*** | -0.717 | 1.395* | 4.349 | 1.430 | 3.579*** | 3.212*** |
(0.323) | (0.426) | (0.590) | (0.845) | (4.313) | (5.789) | (0.822) | (0.852) | |
landsup | 17.06*** | 16.97*** | 3.387 | 3.535 | -10.27 | -7.978 | 10.90** | 10.91** |
(3.630) | (3.626) | (5.604) | (5.742) | (42.08) | (42.80) | (4.536) | (4.543) | |
landfin×density | 0.969* | -5.348*** | 1090.0 | 9.341* | ||||
(0.558) | (1.596) | (1345.0) | (5.130) | |||||
nsop | -1.789*** | -1.740*** | -0.286 | -0.393 | 1.668 | 1.803 | -1.025*** | -0.919** |
(0.159) | (0.161) | (0.239) | (0.244) | (3.510) | (3.544) | (0.398) | (0.405) | |
fdip | -1.997** | -1.912* | -9.764*** | -10.17*** | 79.92 | 89.96 | -0.454 | -0.502 |
(0.979) | (0.981) | (2.216) | (2.229) | (240.0) | (243.5) | (2.545) | (2.545) | |
pgdp | 0.0255 | 0.0269 | -0.131** | -0.123** | -0.931** | -0.920** | -0.150** | -0.109 |
(0.0167) | (0.0166) | (0.0544) | (0.0539) | (0.440) | (0.434) | (0.0714) | (0.0762) | |
wage | 0.175*** | 0.173*** | 0.418*** | 0.398*** | 3.943 | 3.660 | 0.606*** | 0.607*** |
(0.0476) | (0.0477) | (0.0862) | (0.0872) | (4.322) | (4.332) | (0.170) | (0.169) | |
inno | 0.129*** | 0.125*** | -0.630*** | -0.488*** | -27.14 | -24.25 | -0.213 | -0.307 |
(0.0189) | (0.0195) | (0.147) | (0.146) | (33.41) | (33.54) | (0.328) | (0.334) | |
labo | -3.549*** | -3.576*** | 8.132*** | 9.240*** | -11.95 | -10.89 | -3.134* | -3.763** |
(0.392) | (0.391) | (1.822) | (1.885) | (64.94) | (65.38) | (1.679) | (1.691) | |
luse | -1.464*** | -1.442*** | -4.629*** | -5.135*** | 27.91 | 34.61 | -1.591 | -1.581 |
(0.347) | (0.346) | (1.643) | (1.676) | (64.29) | (65.24) | (2.895) | (2.911) | |
urba | -1.173*** | -1.135*** | -3.371*** | -4.195*** | 38.92 | 35.26 | -0.943 | -0.501 |
(0.209) | (0.209) | (1.082) | (1.119) | (74.30) | (75.13) | (1.315) | (1.342) | |
i.city | included | included | included | included | included | included | included | included |
_cons | -0.753*** | -0.671*** | -0.952*** | -1.255*** | -16.30** | -15.75** | -1.870*** | -1.973*** |
(0.184) | (0.190) | (0.299) | (0.308) | (6.369) | (6.366) | (0.474) | (0.475) | |
N | 19634 | 19634 | 5748 | 5748 | 218 | 218 | 3183 | 3183 |
1 | NEFFKE F, HENNING M, BOSCHMA R. How do regions diversify over time? industry relatedness and the development of new growth paths in regions. Economic Geography, 2011(87): 237-265. |
2 | HIDALGO C A, KLINGER B, BARABÁSI A L, et al. The product space conditions the development of nations. Science, 2007(317): 482-487. |
3 | 赵建吉,王艳华,苗长虹.区域新兴产业形成机理:演化经济地理学的视角.经济地理,2019,39(6):36-45. |
ZHAO J, WANG Y, MIAO C. Formation mechanism of new emerging industry:From the perspective of evolutionary economic geography. Economic Geography,2019,39(6):36-45. | |
4 | 钱肖颖,孙斌栋.跨区域产业技术关联与产业创新——基于中国制造业的分析.地理科学进展,2020,39(11):1822-1831. |
QIAN X, SUN B. Interregional technological relatedness and industrial innovation:An analysis based on China's manufacturing industry. Progress in Geography,2020,39(11):1822-1831. | |
5 | MACKINNON D, DAWLEY S, STEEN M, et al. Path creation, global production networks and regional development: A comparative international analysis of the offshore wind sector. Progress in Planning, 2018, 130(MAY):1- 32. |
6 | BOSCHMA R. Relatedness as driver of regional diversification: A research agenda. Regional Studies, 2017, 51(3):351-364. |
7 | MACKINNON D, DAWLEY S, PIKE A, et al. Rethinking path creation: A geographical political economy approach. Economic Geography, 2019(95): 113-135. |
8 | 白燕飞,娄帆,李小建,等.地方主官更替与城市空间增长——基于地级市面板数据的分析.经济地理,2017, 37(10):100-107. |
BAI Y, LOU F, LI X, et al. The replacement of local political leader and the growth of urban space: Based on panel data analysis of prefecture-level city in China. Economic Geography, 2017, 37(10):100-107. | |
9 | 颜燕, 贺灿飞, 王俊松. 产业关联、制度环境与区域产业演化. 北京工商大学学报:社会科学版, 2017, 32(1):118-126. |
YAN Y, HE C, WANG J. Industrial linkage, institutional environment and regional industrial evolution. Journal of Beijing Technology and Business University(Social Sciences) 2017, 32(1): 118-126 | |
10 | ZHU S, LI Z, HE C. Who leads regional industrial dynamics? "New industry creators" in Chinese regions. Growth and Change, 2019,50(1): 69-89 |
11 | GUO Q, HE C.The evolution of production space and regional industrial structrues in China.Geo Journal, 2017, 2(82) :379-396. |
12 | 王健,王鹏,彭山桂,等.地方政府新增建设用地出让互动影响及区域差异.资源科学,2019,41(11):1997-2007. |
WANG J, WANG P, PENG S, et al. Interaction effect of local government transferring newly-increased construction land and its regional difference . Resources Science, 2019, 41(11):1997-2007. | |
13 | 严思齐,彭建超,吴群.土地财政对地方公共物品供给水平的影响——基于中国省级面板数据的分析.城市问题,2017(8):8-14+83. |
YAN S, PENG J, WU Q. The influence of land finance on the supply level of local public goods --Based on the analysis of China's provincial panel data. Urban Problems, 2017(8):8-14+83. | |
14 | LU S, WANG H. Local economic structure, regional competition and the formation of industrial land price in China: Combining evidence from process tracing with quantitative results . Land Use Policy, 2020: 97. |
15 | 范建双,周琳,虞晓芬.土地财政和土地市场发育对城市房价的影响.地理科学,2021,41(5):863-871. |
FAN J, ZHOU L, YU X.Influence of land finance and land market development on urban housing price. Scientia Geographica Sinica,2021,41(5): 863-871. | |
16 | 唐宇娣,朱道林,程建,等.差别定价的产业用地供应策略对产业结构升级的影响——基于中国277个城市的实证分析.资源科学,2020,42(3):548-557. |
TANG Y, ZHU D, CHENG J, et al. Impact of differential pricing strategy of land supply on the upgrading of industrial structure: A study based on the empirical analysis of 277 cities in China. Resources Science,2020,42(3):548-557. | |
17 | 王博,吴天航,冯淑怡.地方政府土地出让干预对区域工业碳排放影响的对比分析——以中国8大经济区为例.地理科学进展,2020,39(9):1436-1446. |
WANG B, WU T, FENG S. Comparative study of the impact of local government land transfer intervention on regional industrial carbon emissions: An example of eight economic zones. Progress in Geography,2020,39(9):1436-1446. | |
18 | 李汝资,刘耀彬,王文刚,谢德金.中国城市土地财政扩张及对经济效率影响路径.地理学报, 2020,75(10):2126-2145. |
LI R, LIU Y, WANG W. China's urban land finance expansion and the transmission routes to economic efficiency. Acta Geographica Sinica, 2020, 75(10): 2126-2145. | |
19 | 马双,曾刚,张翼鸥.技术关联性、复杂性与区域多样化——来自中国地级市的证据.地理研究,2020,39(4):865-879. |
MA S, ZENG G, ZHANG Y. Technological relatedness, complexity and regional diversity: Evidence from Chinese cities. Geographical Research,2020,39(4):865-879. | |
20 | HASSINK R, GONG H, MARQUES P. Moving beyond anglo-american economic geography: Authors' response.International Journal of Urban Sciences. 2019, 23(2):198-204. |
21 | NJØS R, SJØTUN S, S-E JAKOBSEN, et al. Expanding analyses of path creation: Interconnections between territory and technology. Economic Geography, 2020(96): 1-23. |
22 | 高菠阳,李俊玮.全球电子信息产业贸易网络演化特征研究.世界地理研究,2017,26(1):1-11. |
GAO B, LI J. The geography of global electric information industry trade network. World Regional Studies,2017,26(1):1-11. | |
23 | 施凡基,徐勇.中国土地财政与工业发展关系时空差异及其驱动因素研究.地理与地理信息科学,2020,36(3):110-115+132. |
SHI F, XU Y. Study on spatial-temporal differences and driving forces of the relationship between land finance and industrial development in China. Geography and Geo-Information Science,2020,36(3):110-115+132. | |
24 | 宋美喆,刘寒波,叶琛.财政分权对全要素生产率的影响—基于"省直管县"改革的准自然实验.经济地理,2020,40(3):33-42. |
SONG M, LIU H, YE C. The influence of fiscal decentralization on the total factor productivity: Empirical evidence from a quasi-natural experiment of province-managing-county reform. Economic Geography, 2020, 40(3): 33-42. | |
25 | 李玉龙. 土地财政抑制了企业创新吗?——基于信贷错配视角的分析 . 财经理论与实践, 2019, 40(1):113-119. |
LI Y. Does land finance inhibit firm innovation?——Analysis from the perspective of credit misallocation. The Theory and Practice of Finance and Economics, 2019, 40(1):113-119. | |
26 | 李辉,顾荣华,朱玉林.土地出让对长江中游城市群经济辐射的影响效应与形成机制研究.长江流域资源与环境,2020,29(1):35-43. |
LI H, GU R, ZHU Y. Effect of land transfer on the economic radiation of urban agglomerations in the middle reaches of the Yangtze River and its formation mechanism. Resources and Environment in the Yangtze Basin,2020,29(1):35-43. | |
27 | 陆铭.中国经济的症结是空间错配 .深圳大学学报(人文社会科学版),2019,36(1):77-85. |
LU M. Besetting sin of chines economy: Spatial mismatch. journal of shenzhen university (Humanities & Social Sciences), 2019, 36(1):77-85. | |
28 | 杨博飞,朱晟君.金融资本市场与区域制造业演化路径选择.地理研究, 2020, 39(10): 2345-2360. |
YANG B, ZHU S. Financial markets and regional industrial evolution. Geographical Research, 2020, 39(10): 2345-2360. | |
29 | 周沂,贺灿飞.中国城市出口产品演化.地理学报, 2019, 74(6): 1097-1111. |
ZHOU Y, HE C. Evolution of urban export product in China. Acta Geographica Sinica, 2019, 74(6): 1097-1111. | |
30 | 高菠阳,罗会琳,黄志基,等.中国工业用地出让价格空间格局及影响因素.地球信息科学学报, 2020, 22(6):1189-1201. |
GAO B, LUO H, HUANG Z, et al. Research on the spatial layout of and factors affecting the price of industrial land in China. Journal of Geo-Information Science, 2020, 22(6): 1189-1201. | |
31 | 金璐璐, 贺灿飞, 周沂,等. 中国区域产业结构演化的路径突破 . 地理科学进展, 2017, 36(8):974-985. |
JIN L, HE C, ZHOU Y, et al. Path creation in China's industrial evolution . Progress in Geography, 2017, 36(8): 974-985. | |
32 | 原嫄,李国平,孙铁山,等.中国制造业各行业大类的区域转移特征与聚类研究.经济地理, 2015, 35(10): 94-102. |
YUAN Y, LI G, SUN T, et al. Research on regional transfer characteristics and clustering of major industries in Chinese manufacturing industry: An empirical analysis based on data of 2001 and 2009.Economic Geography, 2015, 35(10): 94-102. |
[1] | Lulin XIANG, Jinpeng ZHANG, Xiyan CUN. The metaphor of "Great Divergence": A reexamination of the logic of the development of handicraft industry in China and Western Europe (7-14th Century) [J]. World Regional Studies, 2021, 30(6): 1199-1207. |
[2] | Fengjun JIN, Zuolin YAO. New globalization and China's regional development strategy optimization [J]. World Regional Studies, 2021, 30(1): 1-11. |
[3] | ZHANG Haina, ZENG Gang, ZHU Yiwen. German innovation policy and its impact on regional development [J]. WRS, 2019, 28(3): 104-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||