World Regional Studies ›› 2023, Vol. 32 ›› Issue (9): 78-92.DOI: 10.3969/j.issn.1004-9479.2023.09.20222520
Previous Articles Next Articles
Jianhui REN1(), Linlin LAI1, Ze HE2, Zhaohui CHONG3()
Received:
2022-10-24
Revised:
2022-10-28
Online:
2023-09-15
Published:
2023-09-25
Contact:
Zhaohui CHONG
通讯作者:
种照辉
作者简介:
任建辉(1986—),男,讲师,博士,研究方向为区域创新理论与政策研究,E-mail:jianhui1986_love@126.com。
基金资助:
Jianhui REN, Linlin LAI, Ze HE, Zhaohui CHONG. Spatio-temporal evolution and influencing factors of green innovation pattern in the Yellow River Basin based on green patents[J]. World Regional Studies, 2023, 32(9): 78-92.
任建辉, 赖琳琳, 何则, 种照辉. 基于绿色专利的黄河流域绿色创新格局的时空演进及影响因素[J]. 世界地理研究, 2023, 32(9): 78-92.
Add to citation manager EndNote|Ris|BibTeX
URL: https://sjdlyj.ecnu.edu.cn/EN/10.3969/j.issn.1004-9479.2023.09.20222520
变量类型 | 变量(符号) | 变量解释 |
---|---|---|
被解释变量 | 绿色创新水平(lnGI) | 城市绿色创新申请总量加1后取对数 |
解释变量 | 中心度(Degree) | 由社会网络分析法计算,包括度数中心度(DC)和介数中心度(BC) |
环境规制(ERS) | 采用熵值法计算各类污染物排放量的综合指数来表征环境规制强度,主要包括工业烟(粉)尘排放量、工业SO2排放量和工业废水排放量 | |
金融集聚(qfinan) | 采用金融行业从业人员数据,通过区位熵反映金融集聚水平 | |
人力资本(lnhum) | 普通本专科及以上人口数占全市常住人口比重的对数 | |
经济发展水平 (lngdp) | 采用2005年为基期平减后人均实际GDP的对数值,反映城市经济对绿色创新水平的支撑力度 | |
交通网络发展水平(lnroad) | 包括公路、铁路、民航的客运总量及货运总量和公路网密度,用熵值法对不同指标赋值并加权计算得出 | |
科教支出(lntec) | 用政府教育支出和科学技术支出之和与GDP比值的对数表示 |
Tab. 1 Variable definitions and descriptions
变量类型 | 变量(符号) | 变量解释 |
---|---|---|
被解释变量 | 绿色创新水平(lnGI) | 城市绿色创新申请总量加1后取对数 |
解释变量 | 中心度(Degree) | 由社会网络分析法计算,包括度数中心度(DC)和介数中心度(BC) |
环境规制(ERS) | 采用熵值法计算各类污染物排放量的综合指数来表征环境规制强度,主要包括工业烟(粉)尘排放量、工业SO2排放量和工业废水排放量 | |
金融集聚(qfinan) | 采用金融行业从业人员数据,通过区位熵反映金融集聚水平 | |
人力资本(lnhum) | 普通本专科及以上人口数占全市常住人口比重的对数 | |
经济发展水平 (lngdp) | 采用2005年为基期平减后人均实际GDP的对数值,反映城市经济对绿色创新水平的支撑力度 | |
交通网络发展水平(lnroad) | 包括公路、铁路、民航的客运总量及货运总量和公路网密度,用熵值法对不同指标赋值并加权计算得出 | |
科教支出(lntec) | 用政府教育支出和科学技术支出之和与GDP比值的对数表示 |
排名 | 2015 | 2017 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
城市 | DC | 城市 | BC | 城市 | DC | 城市 | BC | 城市 | DC | 城市 | BC | |
1 | 济南 | 19.7 | 西安 | 10.8 | 西安 | 23.9 | 西安 | 25.7 | 西安 | 36.6 | 西安 | 23.9 |
2 | 西安 | 15.5 | 济南 | 8.7 | 济南 | 21.1 | 郑州 | 13.9 | 青岛 | 23.9 | 太原 | 17.6 |
3 | 青岛 | 12.7 | 郑州 | 7.9 | 青岛 | 19.7 | 太原 | 11.8 | 太原 | 22.5 | 兰州 | 14.6 |
4 | 太原 | 11.3 | 青岛 | 6.9 | 郑州 | 19.7 | 济南 | 9.8 | 济南 | 22.5 | 郑州 | 10.9 |
5 | 郑州 | 8.5 | 太原 | 6.2 | 银川 | 14.1 | 兰州 | 9.3 | 郑州 | 21.1 | 青岛 | 9.4 |
6 | 淄博 | 5.6 | 兰州 | 3.6 | 太原 | 11.3 | 银川 | 7.1 | 兰州 | 19.7 | 济南 | 6.4 |
7 | 榆林 | 5.6 | 西宁 | 2.8 | 淄博 | 9.9 | 青岛 | 6.2 | 潍坊 | 15.5 | 西宁 | 4.5 |
8 | 兰州 | 5.6 | 长治 | 1.4 | 兰州 | 9.9 | 西宁 | 5.8 | 淄博 | 12.7 | 鄂尔多斯 | 3.1 |
9 | 银川 | 5.6 | 开封 | 1.4 | 西宁 | 9.9 | 呼和浩特 | 2.5 | 鄂尔多斯 | 11.3 | 银川 | 2.7 |
10 | 大同 | 4.2 | 洛阳 | 1.4 | 呼和浩特 | 8.5 | 咸阳 | 2.2 | 东营 | 9.9 | 潍坊 | 2.4 |
Tab.2 Top 10 cities in degree centrality and between centrality in green innovation cooperation network
排名 | 2015 | 2017 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
城市 | DC | 城市 | BC | 城市 | DC | 城市 | BC | 城市 | DC | 城市 | BC | |
1 | 济南 | 19.7 | 西安 | 10.8 | 西安 | 23.9 | 西安 | 25.7 | 西安 | 36.6 | 西安 | 23.9 |
2 | 西安 | 15.5 | 济南 | 8.7 | 济南 | 21.1 | 郑州 | 13.9 | 青岛 | 23.9 | 太原 | 17.6 |
3 | 青岛 | 12.7 | 郑州 | 7.9 | 青岛 | 19.7 | 太原 | 11.8 | 太原 | 22.5 | 兰州 | 14.6 |
4 | 太原 | 11.3 | 青岛 | 6.9 | 郑州 | 19.7 | 济南 | 9.8 | 济南 | 22.5 | 郑州 | 10.9 |
5 | 郑州 | 8.5 | 太原 | 6.2 | 银川 | 14.1 | 兰州 | 9.3 | 郑州 | 21.1 | 青岛 | 9.4 |
6 | 淄博 | 5.6 | 兰州 | 3.6 | 太原 | 11.3 | 银川 | 7.1 | 兰州 | 19.7 | 济南 | 6.4 |
7 | 榆林 | 5.6 | 西宁 | 2.8 | 淄博 | 9.9 | 青岛 | 6.2 | 潍坊 | 15.5 | 西宁 | 4.5 |
8 | 兰州 | 5.6 | 长治 | 1.4 | 兰州 | 9.9 | 西宁 | 5.8 | 淄博 | 12.7 | 鄂尔多斯 | 3.1 |
9 | 银川 | 5.6 | 开封 | 1.4 | 西宁 | 9.9 | 呼和浩特 | 2.5 | 鄂尔多斯 | 11.3 | 银川 | 2.7 |
10 | 大同 | 4.2 | 洛阳 | 1.4 | 呼和浩特 | 8.5 | 咸阳 | 2.2 | 东营 | 9.9 | 潍坊 | 2.4 |
指数 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|---|---|
Moran's I | 0.197 | 0.165 | 0.204 | 0.197 | 0.155 | 0.106 | 0.108 | 0.099 |
p-value | 0.001 | 0.004 | 0.000 | 0.001 | 0.005 | 0.030 | 0.028 | 0.038 |
指数 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Moran's I | 0.059 | 0.071 | 0.122 | 0.126 | 0.076 | 0.085 | 0.075 | |
p-value | 0.119 | 0.085 | 0.018 | 0.018 | 0.083 | 0.067 | 0.089 |
Tab.3 Global Moran's I index of green innovation in the Yellow River Basin
指数 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|---|---|
Moran's I | 0.197 | 0.165 | 0.204 | 0.197 | 0.155 | 0.106 | 0.108 | 0.099 |
p-value | 0.001 | 0.004 | 0.000 | 0.001 | 0.005 | 0.030 | 0.028 | 0.038 |
指数 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Moran's I | 0.059 | 0.071 | 0.122 | 0.126 | 0.076 | 0.085 | 0.075 | |
p-value | 0.119 | 0.085 | 0.018 | 0.018 | 0.083 | 0.067 | 0.089 |
变量 | 主效应项 | 空间滞后项 | 直接效应 | 间接效应 | 总效应 | |||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
DC | 0.012* | 0.077** | 0.013* | 0.110** | 0.124*** | |||||
(0.007) | (0.038) | (0.007) | (0.047) | (0.048) | ||||||
BC | 0.019** | 0.159*** | 0.021*** | 0.215*** | 0.236*** | |||||
(0.007) | (0.050) | (0.008) | (0.062) | (0.063) | ||||||
ERS | 0.112** | 0.124** | 0.505 | 0.623* | 0.115** | 0.127** | 0.735* | 0.861** | 0.849** | 0.988** |
(0.052) | (0.052) | (0.330) | (0.331) | (0.051) | (0.050) | (0.421) | (0.403) | (0.433) | (0.413) | |
ERS2 | -0.011** | -0.012*** | -0.074*** | -0.077*** | -0.011*** | -0.012*** | -0.104*** | -0.104*** | -0.116*** | -0.116*** |
(0.004) | (0.004) | (0.025) | (0.025) | (0.004) | (0.004) | (0.031) | (0.030) | (0.032) | (0.031) | |
qfinan | -0.267*** | -0.223*** | -0.300 | 0.528 | -0.270*** | -0.220*** | -0.420 | 0.712 | -0.690 | 0.492 |
(0.084) | (0.082) | (0.681) | (0.658) | (0.083) | (0.081) | (0.950) | (0.935) | (0.972) | (0.954) | |
lnhum | 0.178*** | 0.180*** | 0.913*** | 0.853*** | 0.187*** | 0.188*** | 1.269*** | 1.133*** | 1.456*** | 1.320*** |
(0.057) | (0.056) | (0.296) | (0.295) | (0.056) | (0.055) | (0.410) | (0.389) | (0.422) | (0.401) | |
lngdp | 0.747*** | 0.750*** | 0.454* | 0.554** | 0.760*** | 0.763*** | 0.863*** | 0.933*** | 1.623*** | 1.696*** |
(0.118) | (0.117) | (0.273) | (0.276) | (0.116) | (0.115) | (0.265) | (0.244) | (0.240) | (0.216) | |
lnroad | 0.068** | 0.069*** | -0.046 | 0.011 | 0.067** | 0.069** | -0.043 | 0.032 | 0.024 | 0.102 |
(0.026) | (0.026) | (0.101) | (0.099) | (0.027) | (0.027) | (0.134) | (0.124) | (0.137) | (0.128) | |
lntec | 0.001 | 0.001 | 0.006 | 0.020** | 0.001 | 0.001 | 0.008 | 0.026*** | 0.009 | 0.027*** |
(0.004) | (0.004) | (0.009) | (0.008) | (0.004) | (0.004) | (0.013) | (0.009) | (0.012) | (0.009) | |
ρ | 0.257** | 0.226** | ||||||||
(0.106) | (0.105) | |||||||||
sigma2_e | 0.151*** | 0.149*** | ||||||||
(0.008) | (0.008) | |||||||||
0.609 | 0.617 | |||||||||
N | 780 | 780 |
Tab.4 Regression results of spatial Durbin model for influencing factors of green innovation
变量 | 主效应项 | 空间滞后项 | 直接效应 | 间接效应 | 总效应 | |||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
DC | 0.012* | 0.077** | 0.013* | 0.110** | 0.124*** | |||||
(0.007) | (0.038) | (0.007) | (0.047) | (0.048) | ||||||
BC | 0.019** | 0.159*** | 0.021*** | 0.215*** | 0.236*** | |||||
(0.007) | (0.050) | (0.008) | (0.062) | (0.063) | ||||||
ERS | 0.112** | 0.124** | 0.505 | 0.623* | 0.115** | 0.127** | 0.735* | 0.861** | 0.849** | 0.988** |
(0.052) | (0.052) | (0.330) | (0.331) | (0.051) | (0.050) | (0.421) | (0.403) | (0.433) | (0.413) | |
ERS2 | -0.011** | -0.012*** | -0.074*** | -0.077*** | -0.011*** | -0.012*** | -0.104*** | -0.104*** | -0.116*** | -0.116*** |
(0.004) | (0.004) | (0.025) | (0.025) | (0.004) | (0.004) | (0.031) | (0.030) | (0.032) | (0.031) | |
qfinan | -0.267*** | -0.223*** | -0.300 | 0.528 | -0.270*** | -0.220*** | -0.420 | 0.712 | -0.690 | 0.492 |
(0.084) | (0.082) | (0.681) | (0.658) | (0.083) | (0.081) | (0.950) | (0.935) | (0.972) | (0.954) | |
lnhum | 0.178*** | 0.180*** | 0.913*** | 0.853*** | 0.187*** | 0.188*** | 1.269*** | 1.133*** | 1.456*** | 1.320*** |
(0.057) | (0.056) | (0.296) | (0.295) | (0.056) | (0.055) | (0.410) | (0.389) | (0.422) | (0.401) | |
lngdp | 0.747*** | 0.750*** | 0.454* | 0.554** | 0.760*** | 0.763*** | 0.863*** | 0.933*** | 1.623*** | 1.696*** |
(0.118) | (0.117) | (0.273) | (0.276) | (0.116) | (0.115) | (0.265) | (0.244) | (0.240) | (0.216) | |
lnroad | 0.068** | 0.069*** | -0.046 | 0.011 | 0.067** | 0.069** | -0.043 | 0.032 | 0.024 | 0.102 |
(0.026) | (0.026) | (0.101) | (0.099) | (0.027) | (0.027) | (0.134) | (0.124) | (0.137) | (0.128) | |
lntec | 0.001 | 0.001 | 0.006 | 0.020** | 0.001 | 0.001 | 0.008 | 0.026*** | 0.009 | 0.027*** |
(0.004) | (0.004) | (0.009) | (0.008) | (0.004) | (0.004) | (0.013) | (0.009) | (0.012) | (0.009) | |
ρ | 0.257** | 0.226** | ||||||||
(0.106) | (0.105) | |||||||||
sigma2_e | 0.151*** | 0.149*** | ||||||||
(0.008) | (0.008) | |||||||||
0.609 | 0.617 | |||||||||
N | 780 | 780 |
1 | 杨永春,穆焱杰,张薇. 黄河流域高质量发展的基本条件与核心策略. 资源科学, 2020, 42(3): 409-423. |
YANG Y, MU Y, ZHANG W. Basic conditions and core strategies of high- quality development in the Yellow River Basin. Resources Science, 2020, 42(3): 409-423. | |
2 | 徐辉,师诺,武玲玲,等. 黄河流域高质量发展水平测度及其时空演变. 资源科学, 2020, 42(1): 115-126. |
XU H, SHI N, WU L, et al. High-quality development level and its spatiotemporal changes in the Yellow River Basin. Resources Science,2020, 42(1): 115-126. | |
3 | 刘贝贝,左其亭,刁艺璇. 绿色科技创新在黄河流域生态保护和高质量发展中的价值体现及实现路径. 资源科学, 2021, 43(2): 423-432. |
LIU B, ZUO Q, DIAO Y. The value and pathways of green technology innovation for the ecological conservation and high-quality development of the Yellow River Basin. Resources Science, 2021, 43(2): 423-432. | |
4 | FUSSLER C, JAMES P. Driving Eco-Innovation: A Breakthrough Discipline for Innovation and Sustainability. London:Pitman Publishing, 1996. |
5 | 杨阳,曾刚,葛世帅,等.国内外绿色创新研究进展与展望. 经济地理, 2022, 42(3): 10-21. |
YANG Y, ZENG G, Ge S, et al. Progress and prospect of green innovation research at home and abroad. Economic Geography, 2022, 42(3): 10-21. | |
6 | INIGO E, ALBAREDA L. Understanding sustainable innovation as a complex adaptive system: a systemic approach to the firm. Journal of Cleaner Production, 2016, 126: 1-20. |
7 | 王婧,杜广杰. 中国城市绿色创新空间关联网络及其影响效应. 中国人口·资源与环境, 2021, 31(5): 21-27. |
WANG J, DU G. Spatial correlation network and its effect on urban green innovation in China. China Population,Resources and Environment, 2021, 31(5): 21-27. | |
8 | 段德忠,夏启繁,张杨,等. 长江经济带环境创新的时空特征及其影响因素. 地理科学, 2021, 41(7): 1158-1167. |
DUAN D, XIA Q, ZHENG Y, et al. Spatial and temporal characteristics and influencing factors of environmental innovation in the Yangtze River Economic Belt. Scientia Geographica Sinica, 2021, 41(7): 1158-1167. | |
9 | 董会忠,李旋,张仁杰. 粤港澳大湾区绿色创新效率时空特征及驱动因素分析. 经济地理, 2021, 41(5): 134-144. |
DONG H, LI X, ZHANG R. Spatio-temporal characteristics and driving factors of green innovation efficiency in Guangdong-Hong Kong-Macao Greater Bay Area. Economic Geography, 2021, 41(5): 134-144. | |
10 | WANG K, ZHANG F. Investigating the Spatial Heterogeneity and Correlation Network of Green Innovation Efficiency in China. Sustainability, 2021, 13(3). |
11 | 许玉洁,刘曙光. 黄河流域绿色创新效率空间格局演化及其影响因素. 自然资源学报, 2022, 37(3): 627-44. |
XU Y, LIU X. Spatial pattern evolution of green innovation efficiency and its influencing factors in the Yellow River Basin. Journal of Natural Resources, 2022, 37(3): 627-644. | |
12 | 岳立,薛丹. 黄河流域沿线城市绿色发展效率时空演变及其影响因素. 资源科学, 2020, 42(12): 2274-2284. |
YUE L, XUE D. Spatiotemporal change of urban green development efficiency in the Yellow River Basin and influencing factors. Resources Science, 2020, 42(12): 2274-2284. | |
13 | 肖黎明,肖沁霖,张润婕. 绿色创新效率与生态治理绩效协调的时空演化及收敛性分析——以长江经济带城市为例. 地理与地理信息科学, 2020, 36(6): 64-70. |
XIAO L, XIAO Q, ZHANG R. Spatio-temporal evolution and convergence analysis of the coordination between green innovation efficiency and ecological governance performance: A case study of cities in the Yangtze River Economic Belt. Geography and Geo-Information Science, 2020, 36(6): 64-70. | |
14 | 陈蓓,彭文斌,刘奕飞. 长江中游城市群绿色创新效率的时空演变与驱动因素. 经济地理, 2022, 42(9): 43-49. |
CHEN B, PENG W, LIU Y. Spatio-temporal evolution and driving factors of green innovation efficiency in urban agglomerations in the middle reaches of the Yangtze River. Economic Geography, 2022, 42(9): 43-49. | |
15 | 张娟,耿弘,徐功文,等. 环境规制对绿色技术创新的影响研究. 中国人口·资源与环境, 2019, 29(1): 168-176. |
ZHANG J, GENG H, XU G, Study on the impact of environmental regulation on green technology innovation. China Population, Resources and Environment, 2019, 29(1): 168-176. | |
16 | 孙燕铭,谌思邈. 长三角区域绿色技术创新效率的时空演化格局及驱动因素. 地理研究,2021, 40(10): 2743-2759. |
XUN Y, ZHAN S. Spatio-temporal evolution pattern and driving factors of green technology innovation efficiency in the Yangtze River Delta. Geographical Research, 2021, 40(10): 2743-2759. | |
17 | 杨震宁,侯一凡,李德辉,等.中国企业"双循环"中开放式创新网络的平衡效应——基于数字赋能与组织柔性的考察. 管理世界, 2021, 37(11): 184-205. |
YANG Z, HOU Y, LI D, et al. The balancing effect of open innovation networks in the "Dual Circulation" of Chinese enterprises: An investigation based on digital empowerment and organizational flexibility. Journal of Management World, 2021, 37(11): 184-205. | |
18 | ARAUJO R, FRANCO M. The use of collaboration networks in search of eco-innovation: A systematic literature review. Journal of Cleaner Production, 2021: 314. |
19 | GONZALEZ-MORENO A, TRIGUERO A, SAEZ-MARTINEZ F. Many or trusted partners for eco-innovation? The influence of breadth and depth of firms' knowledge network in the food sector. Technological Forecasting and Social Change, 2019, 147: 51-62. |
20 | ZHANG S, XU X, WANG F, et al. Does cooperation stimulate firms' eco-innovation? Firm-level evidence from China. Environmental Science and Pollution Research, 2022, 29(51): 78052-78068. |
21 | TOJEIRO-RIVERO, MORENO R. Technological cooperation, R&D outsourcing, and innovation performance at the firm level: The role of the regional context. Research Policy, 2019, 48(7): 1798-1808. |
22 | 王腾飞,谷人旭,马仁锋,等. "集聚—扩散"视角下中国区域创新极及其知识溢出区位. 经济地理, 2021, 41(5): 11-18. |
WANG T, GU R, MAO R, et al. Regional innovation pole and its knowledge spillover location in China from the perspective of "Agglomeration and Diffusion". Economic Geography, 2021, 41(5): 11-18. | |
23 | 张明斗,李学思. 网络节点特征与城市绿色创新效率提升——基于节点枢纽性与节点聚集度视角. 西部论坛, 2022, 32(2): 1-15. |
ZHANG D, LI X. Network node characteristics and urban green innovation efficiency improvement: Based on node hub and node clustering degree. West Forum, 2022, 32(2): 1-15. | |
24 | FAN J, XIAO Z. Analysis of spatial correlation network of China's green innovation. Journal of Cleaner Production, 2021, 299(2):126815. |
25 | 刘佳,宋秋月. 中国旅游产业绿色创新效率的空间网络结构与形成机制. 中国人口·资源与环境, 2018, 28(8): 127-37. |
LIU J, SONG Q. Spatial network structure and formation mechanism of green innovation efficiency in China's tourism industry. China Population, Resources and Environment, 2018, 28(8): 127-137. | |
26 | 胡悦,马静,陈菲,等. 京津冀城市群生态创新联系及网络结构研究. 城市问题, 2020, 305(12): 4-13. |
HU Y, MAO J, CHEN F, et al. Research on ecological innovation connection and network structure of Beijing-Tianjin-Hebei urban Agglomeration. Urban Problems, 2020, 305(12): 4-13. | |
27 | 尚勇敏,王振,宓泽锋,等. 长三角绿色技术创新网络结构特征与优化策略. 长江流域资源与环境, 2021, 30(9): 2061-2069. |
SANG Y, WANG Z, FU Z, et al. Structural characteristics and optimization strategy of green technology innovation network in Yangtze River Delta. Resources and Environment in the Yangtze Basin, 2021, 30(9): 2061-2069. | |
28 | 李敏纳,蔡舒,覃成林. 黄河流域经济空间分异态势分析. 经济地理, 2011, 31(3): 379-383. |
LI M, CAI S, QIN C. Analysis of economic spatial differentiation in the Yellow River Basin. Economic Geography, 2011, 31(3): 379-383. | |
29 | 李林山,赵宏波,郭付友,等.黄河流域城市群产业高质量发展时空格局演变研究. 地理科学, 2021, 41(10): 1751-1762. |
LI L, ZHAO H, GUO F, et al. Spatial-temporal pattern evolution of high-quality industrial development in urban agglomeration of the Yellow River Basin. Scientia Geographica Sinica, 2021, 41(10): 1751-1762. | |
30 | 张可云, 张颖. 不同空间尺度下黄河流域区域经济差异的演变. 经济地理, 2020, 40(7): 1-11. |
ZHANG K, ZHANG Y. Evolution of regional economic differences in the Yellow River Basin at different spatial scales. Economic Geography, 2020, 40(7): 1-11. | |
31 | 孙瑜康,李国平,袁薇薇,等. 创新活动空间集聚及其影响机制研究评述与展望. 人文地理, 2017, 32(5): 17-24. |
SUN R, LI G, YUAN W, et al. Review and prospect of spatial agglomeration of innovation activities and its influencing mechanism. Human Geography, 2017, 32(5): 17-24. | |
32 | 戴靓,纪宇凡,王嵩,等. 中国城市知识创新网络的演化特征及其邻近性机制. 资源科学, 2022, 44(7): 1494-1505. |
DAI L, JI Y, WANG S, et al. Evolutionary characteristics and proximity mechanism of intercity knowledge innovation networks in China. Resources Science, 2022, 44(7): 1494-1505. | |
33 | 盛科荣,王丽萍,孙威. 网络权力、知识溢出对中国城市绿色经济效率的影响. 资源科学, 2021, 43(8): 1509-1521. |
SHENG K, WANG L, SUN W. Impacts of network power and knowledge spillovers on China's urban green economic efficiency. Resources Science, 2021, 43(8): 1509-1521. | |
34 | LAURSEN K, SALTER A. Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms . Strategic Management Journal, 2006, 27(2): 131-150. |
35 | GHISETTI C, MARZUCCHIA, MONTRESOR S. The open eco-innovation mode. An empirical investigation of eleven European countries. Research Policy, 2015, 44(5): 1080-1093. |
36 | PPRTER M. America's green strategy. Scientific American, 1991, 264(4): 193-246. |
37 | 蒙大斌,于莹莹. 双重环境规制、创新生态与绿色技术创新——对"波特假说"的再探讨. 软科学 2022,36(10):47-54. |
MENG D, YU Y. Dual environmental regulation, innovation ecology and green technology innovation -- Rediscussion on "Porter Hypothesis". Soft Science, 2022,36(10):47-54. | |
38 | 徐思远,洪占卿. 信贷歧视下的金融发展与效率拖累.金融研究, 2016(5): 51-64. |
XUN S, HONG Z. The drag of financial development and efficiency under credit discrimination. Journal of Financial Research, 2016(5): 51-64. | |
39 | WANG S, SHI X, WANG T, et al. Nonlinear spatial innovation spillovers and regional open innovation: Evidence from China. R & D Management, 2022, 52(5): 854-876. |
40 | 刘传明,马青山.黄河流域高质量发展的空间关联网络及驱动因素. 经济地理, 2020, 40(10): 91-99. |
LIU C, MA Q. Spatial correlation networks and driving factors of high-quality development in the Yellow River Basin. Economic Geography, 2020, 40(10): 91- 99. | |
41 | 韩剑,郑秋玲.政府干预如何导致地区资源错配——基于行业内和行业间错配的分解. 中国工业经济, 2014, (11): 69-81. |
HAN J, ZHENG Q. How does government intervention lead to regional resource misallocation - Based on decomposition of intra-industry and inter-industry misallocation. China Industrial Economics, 2014, (11): 69-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||