世界地理研究 ›› 2023, Vol. 32 ›› Issue (11): 130-140.DOI: 10.3969/j.issn.1004-9479.2023.11.20220363
• 城市与产业 • 上一篇
收稿日期:
2022-05-20
修回日期:
2022-09-23
出版日期:
2023-11-15
发布日期:
2023-12-12
通讯作者:
管卫华
作者简介:
吴小妮(1999—),女,硕士研究生,研究方向为经济地理与空间规划,E-mail:wuxiaoni991026@163.com。
基金资助:
Xiaoni WU1(), Weihua GUAN1,2(), Hui ZHANG1, Lianxia WU3
Received:
2022-05-20
Revised:
2022-09-23
Online:
2023-11-15
Published:
2023-12-12
Contact:
Weihua GUAN
摘要:
为深入探讨区域网络关注现状,以成渝城市群16个城市的抖音粉丝量为测度指标,采用空间关联、核密度分析等方法,分析城市网络关注度的空间分异格局,运用相关分析和地理加权回归模型探讨其影响因素,结果表明:①从空间分异格局看,整体城市网络关注度分布不均衡,呈现出双核结构凸显、中部地区塌陷的特征;关注度层级划分较为清晰,呈上下对称分布;②从空间关联格局看,关注度总值和平均值的LL区在西南部连绵分布,显著LH区围绕成都和重庆分布,人均水平的高值区为连接成都和重庆的资阳;③从空间集聚格局看,关注度总值和平均值的空间格局与分异格局类似,人均水平的空间结构为“核心-外围”结构;④从影响因素看,网络关注度与经济、网络、交通发达程度、城镇化进程、人口构成均呈显著正相关,其作用效应具有明显的空间异质性。本研究可为促进成渝地区城市活力、虚拟经济的提升提供科学参考。
吴小妮, 管卫华, 张惠, 吴连霞. 成渝城市群网络关注度的空间分异及影响因素[J]. 世界地理研究, 2023, 32(11): 130-140.
Xiaoni WU, Weihua GUAN, Hui ZHANG, Lianxia WU. Spatial differentiation and influencing factors of online attention in Chengdu-Chongqing urban agglomeration: Based on the number of Douyin fans[J]. World Regional Studies, 2023, 32(11): 130-140.
地区 | 总值 | 最大值 | 最小值 | 平均值 | 变异系数 |
---|---|---|---|---|---|
成都 | 7 219.50 | 380.90 | 8.90 | 46.27 | 1.33 |
重庆 | 5 342.20 | 429.70 | 7.10 | 35.61 | 1.42 |
绵阳 | 703.09 | 98.69 | 0.18 | 5.49 | 2.69 |
德阳 | 404.63 | 124.61 | 0.03 | 4.09 | 4.03 |
眉山 | 393.45 | 134.53 | 0.06 | 4.23 | 3.58 |
乐山 | 373.21 | 135.09 | 0.08 | 4.15 | 3.62 |
宜宾 | 449.84 | 31.32 | 0.20 | 3.29 | 2.07 |
南充 | 585.53 | 108.94 | 0.15 | 5.23 | 2.56 |
遂宁 | 394.84 | 174.82 | 0.05 | 3.72 | 4.67 |
资阳 | 427.87 | 20.21 | 0.01 | 0.97 | 1.69 |
达州 | 403.64 | 98.44 | 0.07 | 4.04 | 2.77 |
泸州 | 807.06 | 198.50 | 0.16 | 7.21 | 3.06 |
自贡 | 330.33 | 103.01 | 0.08 | 3.03 | 3.36 |
内江 | 237.04 | 26.83 | 0.04 | 2.24 | 1.83 |
广安 | 127.24 | 13.52 | 0.03 | 1.84 | 2.45 |
雅安 | 101.64 | 20.51 | 0.02 | 1.34 | 2.47 |
表1 成渝城市群城市关注度数据的统计特征
Tab.1 Statistical characteristics of the attention data of the Chengdu-Chongqing urban agglomeration
地区 | 总值 | 最大值 | 最小值 | 平均值 | 变异系数 |
---|---|---|---|---|---|
成都 | 7 219.50 | 380.90 | 8.90 | 46.27 | 1.33 |
重庆 | 5 342.20 | 429.70 | 7.10 | 35.61 | 1.42 |
绵阳 | 703.09 | 98.69 | 0.18 | 5.49 | 2.69 |
德阳 | 404.63 | 124.61 | 0.03 | 4.09 | 4.03 |
眉山 | 393.45 | 134.53 | 0.06 | 4.23 | 3.58 |
乐山 | 373.21 | 135.09 | 0.08 | 4.15 | 3.62 |
宜宾 | 449.84 | 31.32 | 0.20 | 3.29 | 2.07 |
南充 | 585.53 | 108.94 | 0.15 | 5.23 | 2.56 |
遂宁 | 394.84 | 174.82 | 0.05 | 3.72 | 4.67 |
资阳 | 427.87 | 20.21 | 0.01 | 0.97 | 1.69 |
达州 | 403.64 | 98.44 | 0.07 | 4.04 | 2.77 |
泸州 | 807.06 | 198.50 | 0.16 | 7.21 | 3.06 |
自贡 | 330.33 | 103.01 | 0.08 | 3.03 | 3.36 |
内江 | 237.04 | 26.83 | 0.04 | 2.24 | 1.83 |
广安 | 127.24 | 13.52 | 0.03 | 1.84 | 2.45 |
雅安 | 101.64 | 20.51 | 0.02 | 1.34 | 2.47 |
层级 | 关注度总值 | 关注度平均值 | 人均关注度 |
---|---|---|---|
第一层级 | 雅安、广安 | 雅安、广安 | 广安 |
第二层级 | 内江、自贡 | 内江、自贡、资阳 | 雅安、内江、宜宾、南充、达州 |
第三层级 | 达州、德阳、遂宁、资阳、 眉山、乐山、宜宾 | 达州、德阳、遂宁、眉山、乐山、宜宾 | 绵阳、德阳、遂宁、资阳、 眉山、乐山、自贡 |
第四层级 | 绵阳、南充、泸州 | 绵阳、南充、泸州 | 泸州、重庆 |
第五层级 | 成都、重庆 | 成都、重庆 | 成都 |
表2 城市网络关注度层级分布情况
Tab.2 Distribution of urban network attention levels
层级 | 关注度总值 | 关注度平均值 | 人均关注度 |
---|---|---|---|
第一层级 | 雅安、广安 | 雅安、广安 | 广安 |
第二层级 | 内江、自贡 | 内江、自贡、资阳 | 雅安、内江、宜宾、南充、达州 |
第三层级 | 达州、德阳、遂宁、资阳、 眉山、乐山、宜宾 | 达州、德阳、遂宁、眉山、乐山、宜宾 | 绵阳、德阳、遂宁、资阳、 眉山、乐山、自贡 |
第四层级 | 绵阳、南充、泸州 | 绵阳、南充、泸州 | 泸州、重庆 |
第五层级 | 成都、重庆 | 成都、重庆 | 成都 |
影响因子维度 | 自变量名称 | 预期作用方向 | 相关系数 |
---|---|---|---|
经济发展水平 | 人均GDP/元 | + | 0.849** |
地方财政一般预算收入/亿元 | + | 0.930** | |
网络发达程度 | 互联网宽带接入用户数/万户 | + | 0.857** |
邮电业务收入/万元 | + | 0.947** | |
城镇化进程 | 常住人口城镇化率/% | + | 0.924** |
二三产占GDP比重/% | + | 0.783** | |
交通发达程度 | 公路密度(里程/万人) | + | 0.027 |
公路货运量/万吨 | + | 0.664** | |
社会人口构成 | 0~14岁人口占比/% | - | -0.286 |
15~64岁人口占比/% | + | 0.693** | |
65岁及以上人口占比/% | - | -0.644** | |
初中及以下人口数量/(人/十万人) | - | -0.886** | |
高中(含中专)人口数量/(人/十万人) | + | -0.535** | |
大专及以上人口数量/(人/十万人) | + | 0.888** |
表3 城市网络关注度影响因素的选取与描述
Tab.3 Selection and description of influencing factors of urban network attention
影响因子维度 | 自变量名称 | 预期作用方向 | 相关系数 |
---|---|---|---|
经济发展水平 | 人均GDP/元 | + | 0.849** |
地方财政一般预算收入/亿元 | + | 0.930** | |
网络发达程度 | 互联网宽带接入用户数/万户 | + | 0.857** |
邮电业务收入/万元 | + | 0.947** | |
城镇化进程 | 常住人口城镇化率/% | + | 0.924** |
二三产占GDP比重/% | + | 0.783** | |
交通发达程度 | 公路密度(里程/万人) | + | 0.027 |
公路货运量/万吨 | + | 0.664** | |
社会人口构成 | 0~14岁人口占比/% | - | -0.286 |
15~64岁人口占比/% | + | 0.693** | |
65岁及以上人口占比/% | - | -0.644** | |
初中及以下人口数量/(人/十万人) | - | -0.886** | |
高中(含中专)人口数量/(人/十万人) | + | -0.535** | |
大专及以上人口数量/(人/十万人) | + | 0.888** |
图5 成渝城市群城市网络关注度影响因素GWR模型回归系数估计的空间分布
Fig.5 Spatial distribution of estimated factors of GWR model regression coefficients of urban network attention in the Chengdu-Chongqing urban agglomeration
1 | 中国互联网络信息中心发布第 46 次«中国互联网络发展状况统计报告». 国家图书馆学刊,2020,29(6):19. |
China Internet Network Information Center released the 46th "Statistical Report on the Development of China's Internet". Journal of the National Library of China, 2020, 29(6):19. | |
2 | RIPBERGER J T. Capturing Curiosity: Using Internet search trends to measure public attentiveness . Policy Studies Journal, 2011, 39(2):239-259. |
3 | XIN Y, BING P, JAMES A E, et al. Forecasting Chinese tourist volume with search engine data . Tourism Management, 2015,46:386-397. |
4 | LI J, LI J, YUAN Y, et al. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi'an, Shaanxi, China. Cities, 2019,86:62-70. |
5 | 鄢继尧,赵媛,许昕,等. 基于网络关注度的中国城市家政服务需求时空演变及影响因素. 经济地理,2021,41(11):56-64. |
YAN J, ZHAO Y, XU X, et al. Temporal and spatial evolution and influencing factors of China's urban Housekeeping Service demand based on Internet attention. Economic Geography, 2021, 41(11):56-64. | |
6 | SUN S, YANG W, LI T, et al. Forecasting tourist arrivals with machine learning and internet search index . Tourism Management,2018,70:1-10. |
7 | 许艳, 陆林, 赵海溶. 乌镇景区网络关注度动态演变与空间差异分析. 经济地理, 2020,40(7):200-210. |
XU Y, LU L, ZHAO H. Dynamic evolution and spatial difference analysis of network attention in Wuzhen scenic spot. Economic Geography, 2020, 40(7):200-210. | |
8 | 李山, 邱荣旭, 陈玲. 基于百度指数的旅游景区络空间关注度:时间分布及其前兆效应. 地理与地理信息科学,2008(6):102-107. |
LI S, QIU R, CHEN L. Online spatial attention of tourist attractions based on Baidu index: Time distribution and its precursor effect. Geography and Geographic Information Science, 2008(6):102-107. | |
9 | 汪秋菊,刘宇,李新,等. 中国主要城市旅游要素网络关注空间演化特征. 世界地理研究,2017,26(1):45-55. |
WANG Q, LIU Y, LI X, et al. The network of tourism elements in major cities in China pays attention to the characteristics of spatial evolution. World Geography Research, 2017, 26(1):45-55. | |
10 | 鄢继尧,赵媛,崔盼盼,等.中国赴俄旅游网络关注度时空差异及成因分析.世界地理研究,2021,30(6):1175-1186. |
YAN J, ZHAO Y, CUI P, et al. Spatial and temporal differences and causes of Chinese tourism network attention to Russia. World Geography Research,2021, 30(6):1175-1186. | |
11 | 李奥, 张涛, 冯冬发. 公众对中美贸易摩擦的关注差异研究——来自网络搜索大数据的证据. 价格理论与实践, 2020(8):172-175. |
LI A, ZHANG T, FENG D. A study on the differences in public attention to Sino-US trade frictions: Evidence from Internet search big data. Price Theory and Practice, 2020(8):172-175. | |
12 | 梁林, 赵玉帛, 刘兵. 京津冀城市间人口流动网络研究——基于腾讯位置大数据分析. 西北人口, 2019,40(1):20-28. |
LIANG L, ZHAO Y, LIU B. Research on the network of population flow between cities in Beijing, Tianjin and Hebei - Based on Tencent location big data analysis. Northwest Population, 2019, 40(1):20-28. | |
13 | 王波, 甄峰, 张浩. 基于签到数据的城市活动时空间动态变化及区划研究. 地理科学, 2015,35(2):151-160. |
WANG B, ZHEN F, ZHANG H. Research on temporal and spatial dynamic changes and zoning of urban activities based on check-in data. Geographical Sciences, 2015, 35(2):151-160. | |
14 | 王萌,匡耀求,黄宁生.珠江三角洲城际间人口流动倾向空间特征:基于网络关注度数据的时空演化.热带地理, 2017,37(1):33-42. |
WANG M, KUANG Y, HUANG N. Spatial characteristics of intercity population mobility propensity in the pearl river delta: Temporal and spatial evolution based on internet attention data. Tropical Geography, 2017, 37(1):33-42. | |
15 | 闫广华,张云.东北城市人口流动倾向强度与吸引力度耦合协调研究:基于网络关注数据.地理科学,2020,40(11):1848-1858. |
YAN G, ZHANG Y. Research on the coupling coordination between population mobility tendency intensity and attractiveness degree in Northeast cities - Based on network attention data. Geographical Sciences, 2020, 40(11):1848-1858. | |
16 | 孙宗锋, 郑跃平. 我国城市政务微博发展及影响因素探究:基于228个城市的"大数据+小数据"分析(2011—2017). 公共管理学报, 2021,18(1):77-89. |
SUN Z, ZHENG Y. Research on the development and influencing factors of urban government microblogs in my country - Based on the analysis of "Big Data + Small Data" in 228 cities (2011-2017). Journal of Public Administration, 2021,18(1):77-89. | |
17 | JEAN D T, ANNIKA A. The public value of E-Government - A literature review. Government Information Quarterly, 2019,36(2):167-178. |
18 | 方创琳. 中国西部地区城市群形成发育现状与建设重点. 干旱区地理, 2010,33(5):667-675. |
FANG C. The formation and development status and construction focus of urban agglomerations in western China. Geography of Arid Regions, 2010, 33(5):667-675. | |
19 | 于肖肖. 川渝城市群环境与经济协调发展研究. 北京:北京工业大学, 2015. |
YU X. Research on the coordinated development of environment and economy in Sichuan-Chongqing urban agglomeration. Beijing: Beijing University of Technology, 2015. | |
20 | 尤朝忠, 段龙龙.成渝经济区门户城市产业空间梯度转移研究. 世界地理研究, 2014,23(2):104-111. |
YOU C, DUAN L. Research on Industrial Spatial Gradient Transfer of Gateway Cities in Chengdu-Chongqing Economic Zone. World Geography Research, 2014,23(2):104-111. | |
21 | 肖义,黄寰,邓欣昊.生态文明建设视角下的生态承载力评价:以成渝城市群为例.生态经济,2018,34(10):179-183. |
XIAO Y, HUANG H, DENG X.Evaluation of ecological carrying capacity from the perspective of ecological civilization construction: Taking Chengdu-Chongqing urban agglomeration as an example.Ecological Economy,2018,34(10):179-183. | |
22 | MARTIRE S, CASTELLANI V, SALA S. Carrying capacity assessment of forest resources: Enhancing environmental sustainability in energy production at local scale . Resources, Conservation & Recycling, 2015,94:11-20. |
23 | 肖钊富, 李瑞, 段霜,等.成渝城市群旅游生态安全时空格局演化研究.世界地理研究,2022(4):1-12. |
XIAO Z, LI R, DUAN X, et al. Research on the evolution of the spatiotemporal pattern of tourism ecological security in the Chengdu-Chongqing urban agglomeration. World Geography Research, 2022(4):1-12. | |
24 | 肖义. 成渝城市群产业绿色发展竞争力测度及时空演变分析. 成都:成都理工大学, 2019. |
XIAO Y. Temporal and spatial evolution analysis of industrial green development competitiveness of Chengdu-Chongqing urban agglomeration. Chengdu: Chengdu University of Technology, 2019. | |
25 | 黄旭婷.成渝地区双城经济圈新型城镇化与环境绩效耦合协调发展研究.重庆:重庆工商大学,2021. |
HUANG X. Research on the coupling and coordinated development of new urbanization and environmental performance in the shuangcheng economic circle in Chengdu-Chongqing region.Chongqing:Chongqing Technology and Business University, 2021. | |
26 | 宗会明,郝灵莎,戴技才.基于百度指数的成渝地区双城经济圈城市网络结构研究.西南大学学报(自然科学版),2022,44(1):36-45. |
ZONG H, HAO L, DAI J. Research on urban network structure of shuangcheng economic circle in Chengdu-Chongqing region based on Baidu Index.Journal of Southwest University (Natural Science Edition),2022,44(1):36-45. | |
27 | 刘想, 李晓东, 马晨. 日流量视角下铁路客运网络时空格局演变—以成渝地区双城经济圈为例. 地理科学,2022,42(5):810-819. |
LIU X, LI X, MA C. Spatial connection pattern and evolution trend of railway passenger transport network from the perspective of daily traffic: Taking Chengdu-Chongqing Twin-City Economic Circle as an example. Scientia Geographica Sinica,2022,42(5):810-819. | |
28 | 刘大均, 陈君子,贾垚焱. 高铁影响下成渝城市群旅游流网络的变化特征. 世界地理研究, 2020, 29(3):549-556. |
LIU D, CHEN J, JIA Y. Characteristic of tourist flow network in Chengdu-Chongqing Urban Agglomeration Under the influence of high-speed railway. The World Geography Research, 2020, 29(3):549-556. | |
29 | JACKSON H.Generalized procedures for evaluating spatial autocorrelation.Geographical Analysis,1981,13(3):224-233. |
30 | PARZEN E. On Estimation of a probability density function and mode. The Annals of Mathematical Statistics, 1962,33(3):1065-1076. |
31 | 王珂靖, 蔡红艳, 杨小唤. 多元统计回归及地理加权回归方法在多尺度人口空间化研究中的应用. 地理科学进展, 2016,35(12):1494-1505. |
WANG K, CAI H, YANG X. The application of multivariate statistical regression and geographically weighted regression methods in the study of multi-scale population spatialization. Advances in Geographical Sciences, 2016, 35(12):1494-1505. | |
32 | 李霞, 曲洪建. 邮轮旅游网络关注度的时空特征和影响因素——基于百度指数的研究. 统计与信息论坛, 2016,31(4):101-106. |
LI X, QU H. Spatial and temporal characteristics and influencing factors of cruise tourism network attention-A research based on Baidu index. Statistics and Information Forum, 2016, 31(4):101-106. | |
33 | 张春慧, 洪晓. 三大古城网络关注度时空分布及其影响因素研究. 资源开发与市场, 2018,34(5):703-708. |
ZHANG C, HONG X. Research on the spatial and temporal distribution of network attention in the three ancient cities and its influencing factors. Resource Development and Market, 2018, 34(5):703-708. |
[1] | 郭卫东, 钟业喜, 李炜. 基于不同交通方式的中国城市间人口流动网络比较研究[J]. 世界地理研究, 2023, 32(7): 102-112. |
[2] | 初楠臣, 张平宇, 吴相利, 徐爽, 史晓楠. 俄罗斯新冠肺炎疫情的扩散:过程、格局与影响因素研究[J]. 世界地理研究, 2023, 32(3): 41-51. |
[3] | 肖钊富, 李瑞, 吕宛青. 成渝城市群旅游生态安全时空格局演化研究[J]. 世界地理研究, 2023, 32(10): 122-133. |
[4] | 韩昊英, 陈宇, 张小东, 蒋懿康. 新冠疫情下城市应急医疗设施空间配置评价研究[J]. 世界地理研究, 2023, 32(1): 162-173. |
[5] | 王丽敏, 吴相利, 刘凡, 张少铎. CEO空间经历对中国民营企业500强 总部区位选择影响分析[J]. 世界地理研究, 2023, 32(1): 67-79. |
[6] | 杨人懿, 钟昌标, 杨子生, 刘凤莲, 彭海英. 西南喀斯特石漠化深度贫困县的贫困影响 因素分析[J]. 世界地理研究, 2022, 31(6): 1298-1309. |
[7] | 孟克祖勒, 阎建忠, 王三. 重庆市主城区休闲设施空间格局变化及其解释[J]. 世界地理研究, 2022, 31(5): 1057-1069. |
[8] | 张家旗, 关小克, 王肖惠. 郑州市旅游资源空间格局特征及便利度评价[J]. 世界地理研究, 2022, 31(5): 998-1008. |
[9] | 夏启繁. 中国对RCEP国家能源投资布局与风险的时空特征[J]. 世界地理研究, 2022, 31(4): 814-826. |
[10] | 侯兰功, 孙继平. 复杂网络视角下的成渝城市群网络结构韧性演变[J]. 世界地理研究, 2022, 31(3): 561-571. |
[11] | 吴丽君, 朱宇, 颜俊, 柯文前, 林李月. “一带一路”沿线国家或地区间人口迁移的空间格局及其演化特征[J]. 世界地理研究, 2022, 31(2): 249-258. |
[12] | 吴丹丹, 吴杨, 马仁锋, 余建辉, 冯学钢. 浙江美丽乡村空间格局及可持续发展模式研究[J]. 世界地理研究, 2022, 31(2): 363-375. |
[13] | 应奎, 李旭东. 中国人口死亡率空间格局演变及其影响因素[J]. 世界地理研究, 2022, 31(2): 440-452. |
[14] | 冯晓兵. 中国民宿网络关注时空特征及影响因素研究[J]. 世界地理研究, 2022, 31(1): 154-165. |
[15] | 马丽君, 邓思凡. “一带一路”对国民出境沿线国家旅游需求的促进效应[J]. 世界地理研究, 2022, 31(1): 41-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||