世界地理研究 ›› 2023, Vol. 32 ›› Issue (4): 96-108.DOI: 10.3969/j.issn.1004-9479.2023.04.2021513
张一诺1,2(), 董雅晴1,2, 路紫1,2(), 杜欣儒1, 杨锦1, 王雨晗1
收稿日期:
2021-07-16
修回日期:
2021-11-26
出版日期:
2023-04-15
发布日期:
2023-05-19
通讯作者:
路紫
作者简介:
张一诺(1995—),女,博士研究生,研究方向为信息经济地理,E-mail:zh_yinuo0@126.com。
基金资助:
Yinuo ZHANG1,2(), Yaqing DONG1,2, Zi LU1,2(), Xinru DU1, Jin YANG1, Yuhan WANG1
Received:
2021-07-16
Revised:
2021-11-26
Online:
2023-04-15
Published:
2023-05-19
Contact:
Zi LU
摘要:
城市对航线贯通枢纽机场构成干线网络系统,在空中交通组织中发挥关键作用,使用2012年和2018年城市对航线数据和相关航班延误数据构建系列指示指标,旨在阐释航线网络联系模式对航班延误分布的影响,进而以研究期间的比较分析来展望其变化趋势。研究结论如下:①航线网络是影响航班延误的外部性基础因素,我国枢纽机场高延误率不能完全归结为机场规模和空管水平,其与航线网络密切相关,分别由网络联系强度和网络联系结构两个方面引发了延误累积效应和延误顶端效应。②我国航线网络联系强度大多超出航空需求度,日内延误频率由低值向高值变化且持续向后端挤压,高峰时段叠置形成延误传染扩散,产生航班延误累积效应。③枢纽机场节点度和中介中心度过高,整体航线网络集聚度和平均路径长度指数偏低,枢纽机场中心优势和桥接作用使网络联系呈现寡头结构,产生航班延误顶端效应。④研究期间我国航线网络形态较为固定,缓解航班延误仍面临巨大挑战,优化空中交通功能实施流量调控是重要改革方向。
张一诺, 董雅晴, 路紫, 杜欣儒, 杨锦, 王雨晗. 中国航线网络联系模式对航班延误分布的影响及其近年变化[J]. 世界地理研究, 2023, 32(4): 96-108.
Yinuo ZHANG, Yaqing DONG, Zi LU, Xinru DU, Jin YANG, Yuhan WANG. The influence of the connection pattern of airline network on flight delay distribution in China and its changes in recent years[J]. World Regional Studies, 2023, 32(4): 96-108.
图1 2012—2018年12个枢纽机场航班延误率数据来源:2012—2013年的数据来自《飞行统计准时性能报告》,2014—2018年来自《飞常准全球机场和航空公司准点率报告》。
Fig.1 Flight delay rate of 12 hub airports from 2012 to 2018
图2 2012年和2018年城市对航线空间格局与空中廊道航班延误分布注:基于自然资源部标准地图服务网站下载的审图号为GS(2019)1697号的地图制作,底图无修改,以下地图同。
Fig.2 Spatial pattern of point-point network and distribution of flight delays in air corridors in 2012 and 2018
机场延误率 | 2012年 | 2018年 | ||||||
---|---|---|---|---|---|---|---|---|
PEK | 0.426** | 0.757*** | 0.603* | 0.774* | 0.841*** | 0.754** | 0.314*** | 0.517*** |
PVG | 0.256* | 0.458** | 0.168** | 0.448*** | 0.922*** | 0.067*** | 0.156** | 0.158** |
SHA | 0.102 | 0.241** | 0.096** | 0.133 | 0.245 | 0.118* | 0.562*** | 0.361*** |
CAN | 0.242 | 0.111 | 0.126* | 0.215*** | 0.120 | 0.322*** | 0.142* | 0.211** |
CKG | 0.793*** | 0.760* | 0.883*** | 0.868** | 0.854*** | 0.889* | 0.853* | 0.557* |
CTU | 0.374* | 0.227** | 0.443* | 0.647** | 0.502** | 0.541** | 0.587*** | 0.153 |
WUH | 0.796*** | 0.258* | 0.418*** | 0.148*** | 0.872*** | 0.367** | 0.256 | 0.358** |
CGO | 0.062 | 0.071*** | 0.196 | 0.133 | 0.045 | 0.101** | 0.062*** | 0.061* |
SHE | 0.042 | 0.411* | 0.126 | 0.115 | 0.510** | 0.409** | 0.112* | 0.246** |
XIY | 0.805*** | 0.734* | 0.612** | 0.716* | 0.874*** | 0.651* | 0.157** | 0.462** |
KMG | 0.426** | 0.707** | 0.572* | 0.749* | 0.847*** | 0.657** | 0.627*** | 0.568*** |
URC | 0.476** | 0.747*** | 0.103* | 0.263** | 0.342 | 0.453** | 0.146 | 0.563** |
探测力系数 | 0.720*** | 0.391 | 0.670* | 0.280 | 0.690** | 0.340 | 0.550* | 0.260 |
平均影响 | 0.790** | 0.570* | 0.416** | 0.369** | 0.840*** | 0.470* | 0.652*** | 0.378*** |
整网影响 | 0.772*** | 0.554** | 0.165* | 0.495** | 0.778*** | 0.617** | 0.587** | 0.177* |
表1 2012年和2018年4个指标单因子探测力系数与独立性检验
Tab.1 Single factor detection results and independent test of four indicators in 2012 and 2018
机场延误率 | 2012年 | 2018年 | ||||||
---|---|---|---|---|---|---|---|---|
PEK | 0.426** | 0.757*** | 0.603* | 0.774* | 0.841*** | 0.754** | 0.314*** | 0.517*** |
PVG | 0.256* | 0.458** | 0.168** | 0.448*** | 0.922*** | 0.067*** | 0.156** | 0.158** |
SHA | 0.102 | 0.241** | 0.096** | 0.133 | 0.245 | 0.118* | 0.562*** | 0.361*** |
CAN | 0.242 | 0.111 | 0.126* | 0.215*** | 0.120 | 0.322*** | 0.142* | 0.211** |
CKG | 0.793*** | 0.760* | 0.883*** | 0.868** | 0.854*** | 0.889* | 0.853* | 0.557* |
CTU | 0.374* | 0.227** | 0.443* | 0.647** | 0.502** | 0.541** | 0.587*** | 0.153 |
WUH | 0.796*** | 0.258* | 0.418*** | 0.148*** | 0.872*** | 0.367** | 0.256 | 0.358** |
CGO | 0.062 | 0.071*** | 0.196 | 0.133 | 0.045 | 0.101** | 0.062*** | 0.061* |
SHE | 0.042 | 0.411* | 0.126 | 0.115 | 0.510** | 0.409** | 0.112* | 0.246** |
XIY | 0.805*** | 0.734* | 0.612** | 0.716* | 0.874*** | 0.651* | 0.157** | 0.462** |
KMG | 0.426** | 0.707** | 0.572* | 0.749* | 0.847*** | 0.657** | 0.627*** | 0.568*** |
URC | 0.476** | 0.747*** | 0.103* | 0.263** | 0.342 | 0.453** | 0.146 | 0.563** |
探测力系数 | 0.720*** | 0.391 | 0.670* | 0.280 | 0.690** | 0.340 | 0.550* | 0.260 |
平均影响 | 0.790** | 0.570* | 0.416** | 0.369** | 0.840*** | 0.470* | 0.652*** | 0.378*** |
整网影响 | 0.772*** | 0.554** | 0.165* | 0.495** | 0.778*** | 0.617** | 0.587** | 0.177* |
1 | FILIPPONE E, GARGIULO F, ERRICO A, et al. Resilience management problem in ATM systems as a shortest path problem. Journal of Air Transport Management, 2016, 56(7): 57-65. |
2 | KHANMOHAMMADI S, TUTUN S, KUCUK Y. A new multilevel input layer artificial neural network for predicting flight delays at JFK airport. Procedia Computer Science, 2016, 95(18): 237-244. |
3 | GELHAUSEN M C, BERSTER P, WILKEN D. A new direct demand model of long-term forecasting air passengers and air transport movements at German airports. Journal of Air Transport Management, 2018, 71(6): 140-152. |
4 | LAMBELHO M, MITICI M, PICKUP S, et al. Assessing strategic flight schedules at an airport using machine learning-based flight delay and cancellation predictions. Journal of Air Transport Management, 2020, 82(1): 1-11. |
5 | YU B, GUO Z, ASIAN S, et al. Flight delay prediction for commercial air transport: A deep learning approach. Transportation Research Part E: Logistics and Transportation Review, 2019, 125(5): 203-221. |
6 | CARRO I, VALDÉS R, GARCÍA J, et al. The influence of the air traffic network structure on the occurrence of safety events: A data-driven approach. Safety Science, 2019, 113(3): 161-170. |
7 | FAGEDA X, FLORES-FILLOL R. How do airlines react to airport congestion? The role of networks. Regional Science & Urban Economics, 2016, 56(1): 73-81. |
8 | WANG C, WANG X. Airport congestion delays and airline networks. Transportation Research Part E: Logistics and Transportation Review, 2019, 122(2): 328-349. |
9 | SUN X, CHUNG S, MA H. Operational risk in airline crew scheduling: Do features of flight delays matter? Decision Sciences, 2020, 51(1): 1455-1490. |
10 | MARCO A, GAGGERO A. Flight cancellations and airline alliances: Empirical evidence from Europe. Transportation Research Part E: Logistics and Transportation Review, 2018, 116(8): 90-101. |
11 | WONG A, TAN S, CHANDRAMOULEESWARAN K R, et al. Data-driven analysis of resilience in airline networks. Transportation Research Part E: Logistics and Transportation Review, 2020, 143(11): 1-14. |
12 | BUBALO B, GAGGERO A A. Flight delays in European airline networks. Research in Transportation Business & Management, 2021, 38(1): 102068. |
13 | KIM M, PARK S. Airport and route classification by modelling flight delay propagation. Journal of Air Transport Management, 2021, 93(4): 1-9. |
14 | JIN Y, WEI Y, XIU C, et al. Study on structural characteristics of China's passenger airline network based on network motifs analysis. Sustainability, 2019, 11(9): 1-15. |
15 | CILIBERTO F, COOK E E, WILLIAMS J W. Network structure and consolidation in the US airline industry, 1990-2015. Review of Industrial Organization, 2019, 54(1): 3-36. |
16 | 张翼, 黄伟刚, 郑兴无. 中国航空枢纽城市的国际连通性研究. 世界地理研究, 2020, 29(3): 491-502. |
ZHANG Y, HUANG W, ZHENG X. International connectivity of China's hub airport. World Regional Studies, 2020, 29(3): 491-502. | |
17 | 刘望保, 韩茂凡, 谢智豪. 全球航线数据下世界城市网络的连接性特征与社团识别. 经济地理, 2020, 40(1): 34-40. |
LIU W, HAN M, XIE Z. Connectivity characteristics and community identification of world city network based on global airline. Economic Geography, 2020, 40(1): 34-40. | |
18 | CHAN C H, CHU T H, WU J H P, et al. Spatially characterizing major airline alliances: A network analysis. ISPRS International Journal of Geo-Information, 2021, 10(1): 1-15. |
19 | HOSSAIN M M, ALAM S. A complex network approach towards modeling and analysis of the Australian airport network. Journal of Air Transport Management, 2017, 60(5): 1-9. |
20 | 王海江, 苗长虹. 中国航空联系的网络结构与区域差异. 地理科学, 2015, 35(10): 1120-1129. |
WANG H, MIAO C. Network structure and regional difference of aviation links in China. Scientia Geographica Sinica, 2015, 35(10): 1120-1129. | |
21 | ROCHA L E. Dynamics of air transport networks: A review from a complex systems perspective. Chinese Journal of Aeronautics, 2017, 30(2): 469-478. |
22 | 董雅晴, 路紫, 刘媛, 等. 中国空中廊道划设与时空拥堵识别及其航线流量影响.地理学报, 2018, 73(10): 2001-2013. |
DONG Y, LU Z, LIU Y, et al. The design of China's corridors-in-the-sky and the influence of air routes traffic on the identification of space-time congestion. Journal of Geographical Sciences, 2018, 73(10): 2001-2013. | |
23 | JIN F, WANG C, CAO Y, et al. Progress of research on transportation geography in China. Journal of Geographical Sciences, 2016, 26(8): 1067-1080. |
24 | 杜欣儒, 路紫, 李仁杰, 等. 中国枢纽机场时间延误成本估算与航线影响分析及中美比较.地理科学进展, 2020, 39(7): 1160-1171. |
DU X, LU Z, LI R, et al. Estimation of time delay cost of hub airports in China, air routes effect and comparison with the United States. Progress in Geography, 2020, 39(7): 1160-1171. | |
25 | CLARK K L, BHATIA U, KODRA E A, et al. Resilience of the US national airspace system airport network. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3785-3794. |
26 | AAG A, GP B. Multilayer networks and route entry into the airline industry: Evidence from the U.S. domestic market. Research in Transportation Economics, 2021, 87(3): 1-14. |
27 | BRUECKNER J, CZERNY A, GAGGERO A. Airline mitigation of propagated delays: Theory and empirics on the choice of schedule buffers. Social Science Electronic Publishing, 2021, 14(10): 930-983. |
28 | KAFLE N, ZOU B. Modeling flight delay propagation: A new analytical-econometric approach. Transportation Research Part B: Methodological, 2016, 93(11): 520-542. |
29 | RODRÍGUEZ-SANZ Á, COMENDADOR F G, VALDÉS R A, et al. Characterization and prediction of the airport operational saturation. Journal of Air Transport Management, 2018, 69(4): 147-172. |
30 | KOTEGAWA T, FRY D, DELAURENTIS D, et al. Impact of service network topology on air transportation efficiency. Transportation Research Part C: Emerging Technologies, 2014, 40(3): 231-250. |
31 | PAMPLONA D, ALVES C. Mitigating air delay: An analysis of the collaborative trajectory options program. Engineering, Technology & Applied Science Research, 2019, 9(3): 4154-4158. |
32 | 马学广, 李鲁奇. 中国城市网络化空间联系结构—基于银行网点数据的研究. 地理科学进展, 2017, 36(4): 393-403. |
MA X, LI L. Network spatial connection structure of Chinese cities based on bank branches data. Progress in Geography, 2017, 36(4): 393-403. | |
33 | 石天戈, 时卉. 基于地理探测器的乌鲁木齐城市扩张特征与时空驱动因素分析. 干旱区地理, 2021, 44(2): 1-16. |
SHI T, SHI H. Urban expansion and its temporal and spatial driving forces of Urumqi based on Geo-detector method. Arid Land Geography, 2021, 44(2): 1-16. | |
34 | CAO Y, ZHU C, WANG Y, et al. A method of reducing flight delay by exploring internal mechanism of flight delays. Journal of Advanced Transportation, 2019, 12(1): 1-8. |
35 | 张生润, 郑海龙, 李涛, 等. 枢纽机场的国际中转客流拥堵溢出效应研究. 地理研究, 2019, 38(11): 2716-2729. |
ZHANG S, ZHENG H, LI T, et al. Research on congestion spillover effects of international transfer traffic on hub airports. Geographical Research, 2019, 38(11): 2716-2729. | |
36 | 聂赛飞, 谷人旭. 航空客运业与区域经济互动的时空维度——以长三角地区为例. 热带地理, 2021, 41(2): 1-16. |
NIE S, GU R. The spatial and temporal dimensions of the interdependence between air passenger transport industry and regional economy in the Yangtze River delta. Tropical Geography, 2018, 41(2): 1-16. | |
37 | BELKOURA S, PEÑA J M, ZANIN M. Generation and recovery of airborne delays in air transport. Transportation Research Part C: Emerging Technologies, 2016, 69(8): 436-450. |
38 | 张一诺, 路紫, 丁疆辉. 京广空中廊道系统延误弹性测算与航空流运行结构分析. 热带地理, 2020, 40(2): 194-205. |
ZHANG Y, LU Z, DING J. Calculation of the system delay elasticity of the Beijing-Guangzhou air corridor with analysis of the air flow operation structure. Tropical Geography, 2020, 40(2): 194-205. | |
39 | LORDAN O, SALLAN J M. Core and critical cities of global region airport networks. Physica A: Statistical Mechanics and its Applications, 2019, 513(1): 724-733. |
40 | ISON S, FRANCIS G, HUMPHREYS I, et al. UK regional airport commercialisation and privatisation: 25 years on. Journal of Transport Geography, 2011, 19(6): 1341-1349. |
41 | 崔婷, 杜晴, 张燕. 支线机场对所在地可达性及经济格局均衡性的影响. 经济地理, 2020, 40(7): 32-39. |
CUI T, DU Q, ZHANG Y. Effect of regional airports on local accessibility and equilibrium of economic patterns. Economic Geography, 2020, 40(7): 32-39. | |
42 | 黄洁, 王姣娥. 枢纽机场的航班波体系结构及其喂给航线的空间格局研究. 地理科学, 2018, 38(11): 1750-1758. |
HUANG J, WANG J. Wave-system structures of airport hubs and spatial patterns of possible indirect connections. Scientia Geographica Sinica, 2018, 38(11): 1750-1758. |
[1] | 张晓瑶, 陆林, 虞虎, 张潇, 邓洪波. 中国传统村落分布特征与成因机制研究[J]. 世界地理研究, 2023, 32(4): 132-143. |
[2] | 赵敏, 张俊, 李鹏. 泛亚高铁建设背景下中国西南-东南亚城市联系的多情景预测[J]. 世界地理研究, 2023, 32(3): 1-16. |
[3] | 李连刚, 胡晓辉. 新冠肺炎疫情下中国区域经济韧性时空格局与影响因素分析[J]. 世界地理研究, 2023, 32(3): 64-75. |
[4] | 谢潇, 盈斌, 杜芳娟, 宋潇玉, 吴函彦. 中国妇幼健康水平的区域差异和影响因素[J]. 世界地理研究, 2023, 32(2): 82-92. |
[5] | 王丽敏, 吴相利, 刘凡, 张少铎. CEO空间经历对中国民营企业500强 总部区位选择影响分析[J]. 世界地理研究, 2023, 32(1): 67-79. |
[6] | 梁茂林, 彭邦文, 骆华松, 洪菊花. 中国与周边国家地缘经济关系测度与时空格局演变分析[J]. 世界地理研究, 2023, 32(1): 43-53. |
[7] | 王孟林, 陈瑛, 张婷婷. 中国对美国州层面直接投资时空演变与驱动因素探究[J]. 世界地理研究, 2023, 32(1): 54-66. |
[8] | 韩瑞玲, 李玲玲, 姚海芳. 中国客运航空网络节点结构及其外部性因素的空间异质性研究[J]. 世界地理研究, 2022, 31(5): 967-977. |
[9] | 焦士兴, 王安周, 陈林芳, 张建伟, 赵荣钦, 李中轩, 尹义星. 中国省域三维水生态足迹及其驱动研究[J]. 世界地理研究, 2022, 31(5): 988-997. |
[10] | 李祺祥, 游小珺, 韦素琼. 基于事件数据分析法的两岸关系测度及影响因素研究[J]. 世界地理研究, 2022, 31(3): 514-526. |
[11] | 应奎, 李旭东. 中国人口死亡率空间格局演变及其影响因素[J]. 世界地理研究, 2022, 31(2): 440-452. |
[12] | 张婷婷, 陈瑛, 王孟林. 基于航空联系的中国城市网络格局演变分析[J]. 世界地理研究, 2022, 31(1): 166-176. |
[13] | 李兵, 彭飞. 基于GDELT数据库的中国及东南亚国家间地缘关系演变[J]. 世界地理研究, 2021, 30(6): 1127-1139. |
[14] | 车冰清, 孙东琪, 朱传耿. “一带一路”建设背景下中国区域空间响应差异及形成机制[J]. 世界地理研究, 2021, 30(5): 903-912. |
[15] | 李聪, 卢明华. 中国跨境进口电商企业的时空特征及影响因素分析[J]. 世界地理研究, 2021, 30(5): 937-947. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||