World Regional Studies ›› 2020, Vol. 29 ›› Issue (4): 781-791.DOI: 10.3969/j.issn.1004-9479.2020.04.2019110
Previous Articles Next Articles
Wenhui LI1,3(), Zhijun QIU2,3, Xueying LI2,3, Zhongnuan CHEN1()
Received:
2019-03-20
Revised:
2019-07-11
Online:
2020-07-30
Published:
2020-08-15
Contact:
Zhongnuan CHEN
李文辉1,3(), 丘芷君2,3, 利雪莹2,3, 陈忠暖1()
通讯作者:
陈忠暖
作者简介:
李文辉(1980-),男,副研究员,博士,硕士生导师,主要从事创新地理学、科技创新与区域发展研究,E-mail:liwenhui@m.scnu.edu.cn。
基金资助:
Wenhui LI, Zhijun QIU, Xueying LI, Zhongnuan CHEN. Comparative research on technological innovation spillover pattern of universities in central cities in China[J]. World Regional Studies, 2020, 29(4): 781-791.
李文辉, 丘芷君, 利雪莹, 陈忠暖. 国家中心城市高校技术创新溢出格局比较研究[J]. 世界地理研究, 2020, 29(4): 781-791.
Add to citation manager EndNote|Ris|BibTeX
URL: https://sjdlyj.ecnu.edu.cn/EN/10.3969/j.issn.1004-9479.2020.04.2019110
一级指标 /权重 | 二级指标 /权重 | 三级指标 /权重 | 四级指标/权重 | 四级指标说明 |
---|---|---|---|---|
技术创新 溢出能力 /1.000 | 创新合作溢出能力/ 0.568 | 合作溢出 广度能力/ 0.273 | 合作申请专利数量/0.110 | 当年与企业合作申请专利总数 |
合作申请专利企业数量/0.086 | 合作申请企业总数 | |||
申请专利企业交通距离/0.077 | 高校与合作申请企业的交通距离总和 | |||
合作溢出 深度能力/ 0.295 | 专利合作申请率/0.064 | 合作申请专利总数/所有申请专利数量 | ||
专利合作申请强度/0.106 | 合作申请专利总数/合作申请企业总数 | |||
合作申请专利企业活动年期/0.125 | 企业与高校合作申请专利活动年期的平均值 | |||
技术转移溢出能力/ 0.432 | 转移溢出 广度能力/ 0.232 | 专利技术转移数量/0.075 | 当年专利技术转移的总数 | |
吸收专利技术转移企业量/0.075 | 吸收专利技术转移企业的总数 | |||
专利技术转移交通距离/0.082 | 高校与吸收技术转移企业的交通距离总和 | |||
转移溢出 深度能力/ 0.200 | 专利技术转移率/0.112 | 专利技术转移数量/所有授权专利数量 | ||
专利技术转移强度/0.043 | 专利技术转移数量/吸收专利技术转移 企业数量 | |||
吸收专利技术转移企业活动年期/0.045 | 企业吸收高校技术转移活动年期的平均值 |
Tab.1 Index system and weight of tinnovation spillover ability of universities in central cities of China
一级指标 /权重 | 二级指标 /权重 | 三级指标 /权重 | 四级指标/权重 | 四级指标说明 |
---|---|---|---|---|
技术创新 溢出能力 /1.000 | 创新合作溢出能力/ 0.568 | 合作溢出 广度能力/ 0.273 | 合作申请专利数量/0.110 | 当年与企业合作申请专利总数 |
合作申请专利企业数量/0.086 | 合作申请企业总数 | |||
申请专利企业交通距离/0.077 | 高校与合作申请企业的交通距离总和 | |||
合作溢出 深度能力/ 0.295 | 专利合作申请率/0.064 | 合作申请专利总数/所有申请专利数量 | ||
专利合作申请强度/0.106 | 合作申请专利总数/合作申请企业总数 | |||
合作申请专利企业活动年期/0.125 | 企业与高校合作申请专利活动年期的平均值 | |||
技术转移溢出能力/ 0.432 | 转移溢出 广度能力/ 0.232 | 专利技术转移数量/0.075 | 当年专利技术转移的总数 | |
吸收专利技术转移企业量/0.075 | 吸收专利技术转移企业的总数 | |||
专利技术转移交通距离/0.082 | 高校与吸收技术转移企业的交通距离总和 | |||
转移溢出 深度能力/ 0.200 | 专利技术转移率/0.112 | 专利技术转移数量/所有授权专利数量 | ||
专利技术转移强度/0.043 | 专利技术转移数量/吸收专利技术转移 企业数量 | |||
吸收专利技术转移企业活动年期/0.045 | 企业吸收高校技术转移活动年期的平均值 |
城市 | 合作申请专利数量/项 | 合作申请专利企业数量/家 | 合作申请专利企业平均交通距离/km | 专利合作申请率/% | 专利合作申请强度/项 | 合作申请专利企业活动年期/年 |
---|---|---|---|---|---|---|
北京 | 8 811 | 3 008 | 647.2 | 11.5 | 2.9 | 1.6 |
天津 | 864 | 483 | 563.6 | 5.5 | 1.8 | 1.4 |
上海 | 5 010 | 2 241 | 356.9 | 10.0 | 2.2 | 1.7 |
广州 | 2 013 | 1 076 | 258.3 | 10.5 | 1.9 | 1.4 |
重庆 | 639 | 341 | 417.3 | 8.1 | 1.9 | 1.4 |
成都 | 1 027 | 573 | 798.4 | 5.6 | 1.8 | 1.4 |
武汉 | 1 738 | 945 | 437.6 | 7.8 | 1.8 | 1.1 |
郑州 | 185 | 124 | 255.1 | 11.3 | 1.5 | 1.1 |
西安 | 1 397 | 734 | 362.3 | 5.5 | 1.9 | 1.5 |
Tab.2 Spillover indicators of technological innovation cooperation in universities in central cities of China
城市 | 合作申请专利数量/项 | 合作申请专利企业数量/家 | 合作申请专利企业平均交通距离/km | 专利合作申请率/% | 专利合作申请强度/项 | 合作申请专利企业活动年期/年 |
---|---|---|---|---|---|---|
北京 | 8 811 | 3 008 | 647.2 | 11.5 | 2.9 | 1.6 |
天津 | 864 | 483 | 563.6 | 5.5 | 1.8 | 1.4 |
上海 | 5 010 | 2 241 | 356.9 | 10.0 | 2.2 | 1.7 |
广州 | 2 013 | 1 076 | 258.3 | 10.5 | 1.9 | 1.4 |
重庆 | 639 | 341 | 417.3 | 8.1 | 1.9 | 1.4 |
成都 | 1 027 | 573 | 798.4 | 5.6 | 1.8 | 1.4 |
武汉 | 1 738 | 945 | 437.6 | 7.8 | 1.8 | 1.1 |
郑州 | 185 | 124 | 255.1 | 11.3 | 1.5 | 1.1 |
西安 | 1 397 | 734 | 362.3 | 5.5 | 1.9 | 1.5 |
城市 | 专利技术转移数量/项 | 吸收专利技术转移企业数量/项 | 专利技术转移交通距离/km | 专利技术转移率/% | 专利技术转移强度/项 | 吸收专利技术转移企业活动年期/年 |
---|---|---|---|---|---|---|
北京 | 2 371 | 1 886 | 659.9 | 5.0 | 1.3 | 1.5 |
天津 | 561 | 443 | 604.4 | 8.3 | 1.3 | 1.4 |
上海 | 2 275 | 1 769 | 280.9 | 7.9 | 1.3 | 1.2 |
广州 | 838 | 745 | 275.3 | 17.4 | 1.1 | 1.5 |
重庆 | 316 | 264 | 646.0 | 6.4 | 1.4 | 1.2 |
成都 | 462 | 372 | 854.4 | 4.6 | 1.3 | 1.3 |
武汉 | 774 | 464 | 398.8 | 5.9 | 1.7 | 1.3 |
郑州 | 76 | 65 | 576.4 | 6.9 | 1.3 | 1.2 |
西安 | 988 | 736 | 505.3 | 5.9 | 1.4 | 1.2 |
Tab.3 Spillover indicators of technological innovation transfer in universities in central cities of China
城市 | 专利技术转移数量/项 | 吸收专利技术转移企业数量/项 | 专利技术转移交通距离/km | 专利技术转移率/% | 专利技术转移强度/项 | 吸收专利技术转移企业活动年期/年 |
---|---|---|---|---|---|---|
北京 | 2 371 | 1 886 | 659.9 | 5.0 | 1.3 | 1.5 |
天津 | 561 | 443 | 604.4 | 8.3 | 1.3 | 1.4 |
上海 | 2 275 | 1 769 | 280.9 | 7.9 | 1.3 | 1.2 |
广州 | 838 | 745 | 275.3 | 17.4 | 1.1 | 1.5 |
重庆 | 316 | 264 | 646.0 | 6.4 | 1.4 | 1.2 |
成都 | 462 | 372 | 854.4 | 4.6 | 1.3 | 1.3 |
武汉 | 774 | 464 | 398.8 | 5.9 | 1.7 | 1.3 |
郑州 | 76 | 65 | 576.4 | 6.9 | 1.3 | 1.2 |
西安 | 988 | 736 | 505.3 | 5.9 | 1.4 | 1.2 |
影响因素 | 经济总量(GDP) | 研究与试验发展(R&D)人员 | 专利申请量 | 交通距离 | 网络点度中心性 | 网络中介中心性 | 网络接近中心性 |
---|---|---|---|---|---|---|---|
皮尔逊相关性 | 0.466** | 0.258* | 0.231 | -0.410* | 0.629* | 0.569 | 0.618 |
显著性(双尾) | 0.000 | 0.040 | 0.076 | 0.036 | 0.050 | 0.083 | 0.052 |
Tab.4 Regression analysis of spillover ability of technological innovation and related factors
影响因素 | 经济总量(GDP) | 研究与试验发展(R&D)人员 | 专利申请量 | 交通距离 | 网络点度中心性 | 网络中介中心性 | 网络接近中心性 |
---|---|---|---|---|---|---|---|
皮尔逊相关性 | 0.466** | 0.258* | 0.231 | -0.410* | 0.629* | 0.569 | 0.618 |
显著性(双尾) | 0.000 | 0.040 | 0.076 | 0.036 | 0.050 | 0.083 | 0.052 |
1 | Watkins A, Papaioannou T, Mugwagwa J, et al. National innovation systems and the intermediary role of industry associations in building institutional capacities for innovation in developing countries:a critical review of the literature. Research Policy, 2015, 44(8): 1407-1418. |
2 | Cooke P, Uranga M G, Etxebarria G. Regional innovation systems: institutional and organisational dimensions. Research Policy, 1997, 26(4): 475-491. |
3 | 邵一华.国家创新系统中的大学:国际比较研究.科学学与科学技术管理,2002(3):9-12. |
Shao Y.Universities in the national innovation system:International comparative study.Science of Science and Management of S&T,2002(3): 9-12. | |
4 | Etzkowitz H, Leydesdorff L. The dynamics of innovation: From national systems and “mode 2” to a triple helix of university industry government relations. Research policy, 2000, 29(2): 109-123. |
5 | 刘智强, 曾伏娥. 技术创新全球化趋势及其对国家创新系统边界的影响. 研究与发展管理, 2006, 18(1): 26-32. |
Liu Z, Zeng F. The globalization trend of technology innovation and its impact to the boundary of national innovation system. Research and Development Management, 2006, 18(1): 26-32. | |
6 | 贺灿飞, 郭琪, 马妍, 等. 西方经济地理学研究进展. 地理学报, 2014, 69(8): 1207-1223. |
He C, Guo Q, Ma Y, et al. Progress of economic geography in the west: A literature review. Acta Geographica Sinica, 2014, 69(8): 1207-1223. | |
7 | Friedmann J. The world city hypothesis. Development & Change, 1986, 17(1): 69-83. |
8 | 李霞, 戴胜利. 面向建设国家中心城市的智慧武汉发展评价及模式优化: 理论与实证. 中国软科学, 2018, (1): 77-89. |
Li X, Dai S. Research on development evaluation and mode optimization of smart Wuhan oriented to national central city: Theory and empirical analysis. China Soft Science, 2018, (1): 77-89. | |
9 | 潘峰华, 杨博飞. 国家中心城市竞争力及其职能演变——基于上市企业总部的研究. 地理研究, 2018, 37(7): 1364-1376. |
Pan F, Yang B. Competitiveness and function specialization of national central cities in China: An empirical study based on headquarters of China's pubic listing firms. Geographical Research, 2018, 37(7): 1364-1376. | |
10 | 于文浩.改革开放40年中国国家创新体系的路径选择与启示.南京社会科学,2018(9):18-24. |
Yu W.The evolution of China’s national innovation system in the last 40 years of reform and opening up.Nanjing Journal of Social Sciences, 2018(9):18-24. | |
11 | Datta Surja, Saad Mohammed, Sarpong David. National systems of innovation, innovation niches, and diversity in university systems. Technological Forecasting & Social Change, 2019, (143): 27-36. |
12 | 廖述梅.高校研发对企业技术创新的溢出效应分析.科研管理,2011,32(6): 11-17. |
Liao S.On the spillover effect of university R&D on enterprise technological innovation in China.Science Research Management,2011,32(6):11-17. | |
13 | 胡曙虹, 黄丽, 范蓓蕾, 等. 中国高校创新产出的空间溢出效应与区域经济增长. 地理科学, 2016, 36(12):1767-1776. |
Hu S, Huang L, Fan B, et al. Spatial spillover effects of innovative outputs of university and its impacts on regional economic growth of China. Scientia Geographica Sinica, 2016, 36(12):1767-1776. | |
14 | Qiu S, Liu X, Gao T. Do emerging countries prefer local knowledge or distant knowledge? Spillover effect of university collaborations on local firms. Research Policy, 2017, 46(7): 1299-1311. |
15 | 余泳泽, 刘大勇. 我国区域创新效率的空间外溢效应与价值链外溢效应. 管理世界, 2013(7): 6-20, 70. |
Yu Y, Liu D. The effect of the space outflow of China's regional innovation and the effect of the outflow of value chanins. Management World, 2013(7): 6-20, 70. | |
16 | Seo Wonchul. Analyzing causality of technological knowledge spillovers: Patent analysis approach. Science Direct, 2015(2): 485-489. |
17 | Qiao Y, Ding C, Liu J. Localization, knowledge spillover, and R&D investment: Evidence of Chinese cities. Journal of Urban Management, 2019, . |
18 | 王少剑, 王洋, 赵亚博. 1990年来广东区域发展的空间溢出效应及驱动因素. 地理学报, 2015, 70(6): 965-979. |
Wang S, Wang Y, Zhao Y. Spatial spillover effects and multi-mechanism for regional development in Guangdong province since 1990s. Acta Geographica Sinica, 2015, 70(6): 965-979. | |
19 | 郭泉恩, 孙斌栋. 高校知识溢出对我国高技术产业创新的影响研究——基于省级区域的空间计量分析. 世界地理研究, 2017, 26(4): 82-92. |
Guo Q, Sun B. Study on university knowledge spillover effects on regional innovation in high-tech industries: Based on the spatial econometric analysis in China. World Regional Studies, 2017,26(4):82-92. | |
20 | 李晨, 覃成林, 任建辉.空间溢出、邻近性与区域创新.中国科技论坛,2017(1): 47-52, 68. |
Li C, Qin C, Ren J.Spatial spillovers,proximity and regional innovation: Evidence from China.Forum on Science and Technology in China, 2017 (1): 47-52, 68. | |
21 | Smrkolj Grega, Wagener Florian. Research among copycats: R&D, spillovers, and feedback strategies. International Journal of Industrial Organization, 2019, (65): 82-120. |
22 | 郑国洪. 国家中心城市创新效率比较与提升策略. 河南社会科学, 2017(4): 38-43. |
Zheng G. Comparison and improvement strategy of innovation efficiency in national central cities. Henan Social Sciences, 2017 (4): 38-43. | |
23 | 陆菊春, 沈春怡. 国家中心城市绿色创新效率的异质性及演变特征. 城市问题, 2019(2): 21-28. |
Lu J, Shen C. Heterogeneity and evolution of green innovation efficiency in national central cities. Urban Problems, 2019(2): 21-28. | |
24 | 李燕萍, 王健, 张韵君. 高校专利合作能力评价指标研究——基于广东省数据分析. 科技进步与对策, 2016, 33(2): 124-129. |
Li Y, Wang J, Zhang Y. Empirical study on evaluation index of patent cooperation capability for university based on data of collaborative patents from Guangdong Province. Science & Technology Progress and Policy, 2016, 33(2): 124-129. | |
25 | 王富喜, 毛爱华, 李赫龙. 基于熵值法的山东省城镇化质量测度及空间差异分析. 地理科学. 2013, 33(11): 1323-1329. |
Wang F, Mao A, Li H. Quality measurement and regional difference of urbanization in Shandong Province based on the entropy method. Scientia Geographica Sinica, 2013, 33(11): 1323-1329. | |
26 | 刘军. 社会网络分析导论. 北京: 社会科学文献出版社, 2004, 6-46. |
Liu J. Social Network Analysis. Beijing: Social Science Literature Press, 2004, 6-46. | |
27 | 段德忠,杜德斌,谌颖,等. 中国城市创新技术转移格局与影响因素.地理学报,2018,73(4): 738-754. |
Duan D, Du D, Chen Y, et al. Technology transfer in China's city system: Process, pattern and influencing factors. Acta Geographica Sinica, 2018, 73(4): 738-754. | |
28 | 刘立芳. 环渤海地区地级以上城市间的经济联系——基于公路交通距离的分析. 临汾: 山西师范大学, 2010. |
Liu L. The economic relation of the cities above the prefectual level in the areas around the Bohai Sea——Based on the road traffic distance. Linfen: Shanxi Normal University, 2010. | |
29 | 黎明, 郭琪, 贺灿飞. 邻近性与中国企业出口市场的地理扩张. 世界地理研究, 2018, 27(1): 1-11. |
Li M, Guo Q, He C. Proximity and the geographical market expansion of Chinese exporters. World Regional Studies, 2018, 27(1):1-11. |
[1] | Nanchen CHU, Pingyu ZHANG, Xiangli WU, Shuang XU, Xiaonan SHI. COVID-19 diffusion in Russia: Process, pattern and influencing factors [J]. World Regional Studies, 2023, 32(3): 41-51. |
[2] | Di WU, Yupeng WANG, Nuo WANG. Analysis on the evolution of bauxite flow pattern in the world based on the gravity model of resource field [J]. World Regional Studies, 2023, 32(3): 52-63. |
[3] | Liangang LI, Xiaohui HU. Analysis on the spatial-temporal pattern and influencing factors of regional economic resilience in China under the COVID-19 pandemic [J]. World Regional Studies, 2023, 32(3): 64-75. |
[4] | Haoying HAN, Yu CHEN, Xiaodong ZHANG, Yikang JIANG. Study on spatial allocation evaluation of urban emergency medical facilities: A case study of COVID-19 in Wuhan [J]. World Regional Studies, 2023, 32(1): 162-173. |
[5] | Limin WANG, Xiangli WU, Fan LIU, Shaoduo ZHANG. The impact of CEO space experience on location choice of China's top 500 private enterprises' headquarters [J]. World Regional Studies, 2023, 32(1): 67-79. |
[6] | Ruhong WEI, Li JIN, Da FANG. The spatial spillover of housing price and its determinants: Case study in the Yangtze River Delta [J]. World Regional Studies, 2023, 32(1): 117-129. |
[7] | Xiaobiao LIN, Hengbi ZHENG, Shanggang YIN, Yuqi LU. The spatio-temporal pattern evolution and convergence of global religious diversity after World War Ⅱ [J]. World Regional Studies, 2023, 32(1): 5-18. |
[8] | Maolin LIANG, Bangwen PENG, Huasong LUO, Juhua HONG. Measurement of geo-economic relationship between China and neighboring countries and evolution of its spatio-temporal pattern [J]. World Regional Studies, 2023, 32(1): 43-53. |
[9] | Menglin WANG, Ying CHEN, Tingting ZHANG. Spatial-temporal evolution and driving factors of intrastate COFDI in the United States: A case study of Texas [J]. World Regional Studies, 2023, 32(1): 54-66. |
[10] | Ting WANG, Peixue LIU, Guoping WU, Jianxin ZHANG, Aixin ZHENG, Zhipei ZHU. Spatial pattern evolution of cultural enterprises and the heterogeneity of its influential factors in Nanjing [J]. World Regional Studies, 2022, 31(6): 1310-1320. |
[11] | Linjing MA, Peisu LI, Yahong WU. How does urbanization affect informal employment? [J]. World Regional Studies, 2022, 31(6): 1273-1284. |
[12] | Renyi YANG, Changbiao ZHONG, Zisheng YANG, fenglian LIU, Haiying PENG. Analysis on poverty influencing factors in deep poverty county of Karst Rocky-desertified Area in Southwest China [J]. World Regional Studies, 2022, 31(6): 1298-1309. |
[13] | Kezule MENG, Jianzhong YAN, San WANG. Spatial pattern evolution and interpretation of leisure facilities in central Chongqing [J]. World Regional Studies, 2022, 31(5): 1057-1069. |
[14] | Jiaqi ZHANG, Xiaoke GUAN, Xiaohui WANG. Spatial pattern characteristics and convenience evaluation of tourism resources in Zhengzhou [J]. World Regional Studies, 2022, 31(5): 998-1008. |
[15] | Yinghui ZHAO, Baitong MA, Liang ZHU, Xumeng ZHAO, Yanhong QI. Study on spatio-temporal changes of China's land expropriation scale [J]. World Regional Studies, 2022, 31(5): 978-987. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||