World Regional Studies ›› 2025, Vol. 34 ›› Issue (2): 38-54.DOI: 10.3969/j.issn.1004-9479.2025.02.20230554
Previous Articles Next Articles
Guangda CHEN1, Shengbing HE1,2, Huarong ZHOU1
Online:
2025-02-15
Published:
2025-02-24
陈光达1, 贺胜兵1,2, 周华蓉1
Guangda CHEN, Shengbing HE, Huarong ZHOU. Study on the endogenous evolution mechanism of trade preference network for digital products among the Belt and Road Countries[J]. World Regional Studies, 2025, 34(2): 38-54.
陈光达, 贺胜兵, 周华蓉. “一带一路”沿线数字产品贸易偏好网络的内生演化机制研究[J]. 世界地理研究, 2025, 34(2): 38-54.
Add to citation manager EndNote|Ris|BibTeX
URL: https://sjdlyj.ecnu.edu.cn/EN/10.3969/j.issn.1004-9479.2025.02.20230554
社群 | 接收数/个 | 发出数/个 | 实际内部数与期望内部数之比 | 外部接收数与外部发出数之比 | 扮演的角色 | ||
---|---|---|---|---|---|---|---|
内部 | 外部 | 内部 | 外部 | ||||
非洲南亚社群 | 752 | 278 | 752 | 382 | 1.78 | 0.73 | 净受益模块 |
西亚东欧社群 | 676 | 357 | 676 | 255 | 2.13 | 1.40 | 双向溢出模块 |
东亚社群 | 103 | 130 | 103 | 104 | 3.04 | 1.25 | 双向溢出模块 |
拉丁美洲社群 | 124 | 85 | 124 | 109 | 4.96 | 0.78 | 净受益模块 |
Tab.1 Results of the community modularity analysis in 2019
社群 | 接收数/个 | 发出数/个 | 实际内部数与期望内部数之比 | 外部接收数与外部发出数之比 | 扮演的角色 | ||
---|---|---|---|---|---|---|---|
内部 | 外部 | 内部 | 外部 | ||||
非洲南亚社群 | 752 | 278 | 752 | 382 | 1.78 | 0.73 | 净受益模块 |
西亚东欧社群 | 676 | 357 | 676 | 255 | 2.13 | 1.40 | 双向溢出模块 |
东亚社群 | 103 | 130 | 103 | 104 | 3.04 | 1.25 | 双向溢出模块 |
拉丁美洲社群 | 124 | 85 | 124 | 109 | 4.96 | 0.78 | 净受益模块 |
指标 | 2000 | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
网络密度 | 0.156 | 0.171 | 0.170 | 0.174 | 0.179 | 0.193 | 0.184 | 0.189 | 0.189 | 0.195 | 0.205 | 0.198 | 0.181 |
网络直径 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 3 |
平均路径长度 | 2.034 | 1.973 | 1.954 | 1.964 | 1.944 | 1.908 | 1.949 | 1.930 | 1.941 | 1.930 | 1.897 | 1.905 | 1.93 |
平均聚类系数 | 0.326 | 0.323 | 0.316 | 0.316 | 0.32 | 0.331 | 0.334 | 0.343 | 0.335 | 0.343 | 0.347 | 0.333 | 0.335 |
互惠性 | 0.470 | 0.457 | 0.462 | 0.459 | 0.455 | 0.467 | 0.455 | 0.486 | 0.473 | 0.474 | 0.485 | 0.474 | 0.474 |
贸易偏好均值 | 0.524 | 0.451 | 0.466 | 0.437 | 0.486 | 0.484 | 0.501 | 0.489 | 0.471 | 0.451 | 0.455 | 0.461 | 0.433 |
Tab.2 Overall characteristics of network structure of trade preference for digital products along the Belt and Road from 2000 to 2019
指标 | 2000 | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
网络密度 | 0.156 | 0.171 | 0.170 | 0.174 | 0.179 | 0.193 | 0.184 | 0.189 | 0.189 | 0.195 | 0.205 | 0.198 | 0.181 |
网络直径 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 3 |
平均路径长度 | 2.034 | 1.973 | 1.954 | 1.964 | 1.944 | 1.908 | 1.949 | 1.930 | 1.941 | 1.930 | 1.897 | 1.905 | 1.93 |
平均聚类系数 | 0.326 | 0.323 | 0.316 | 0.316 | 0.32 | 0.331 | 0.334 | 0.343 | 0.335 | 0.343 | 0.347 | 0.333 | 0.335 |
互惠性 | 0.470 | 0.457 | 0.462 | 0.459 | 0.455 | 0.467 | 0.455 | 0.486 | 0.473 | 0.474 | 0.485 | 0.474 | 0.474 |
贸易偏好均值 | 0.524 | 0.451 | 0.466 | 0.437 | 0.486 | 0.484 | 0.501 | 0.489 | 0.471 | 0.451 | 0.455 | 0.461 | 0.433 |
效应 | 变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|---|
Edges | -2.000 6***(0.050 7) | -5.747 6***(0.223 1) | 2.699 6***(0.299 3) | 0.864 7**(0.317 2) | 0.725 3*(0.318 3) | 4.012 0***(0.363 3) | |
内生结构依赖效应 | Mutual | 1.921 6*** (0.013 6) | 1.651 5***(0.019 0) | 1.031 4***(0.024 6) | 0.706 0***(0.021 8) | 0.554 5***(0.029 4) | |
Cyclicalties | -0.234 3*** (0.023 8) | -0.155 7***(0.021 7) | -0.147 0***(0.022 7) | -0.119 3***(0.023 8) | -0.124 1***(0.023 0) | ||
Transitiveties | 0.240 9*** (0.026 0) | 0.222 7***(0.026 0) | 0.192 1***(0.029 4) | 0.141 3***(0.035 6) | 0.140 5***(0.035 4) | ||
Stability | 1.419 1***(0.011 3) | 1.410 5***(0.011 5) | |||||
Variability | -0.020 1***(0.005 1) | -0.019 9***(0.005 4) | |||||
Delrecip | 0.283 3***(0.026 2) | ||||||
国家属性效应 | Homophily(REG) | 1.302 4***(0.013 6) | 0.371 5***(0.013 6) | 0.259 9***(0.014 3) | 0.250 7***(0.015 1) | 0.439 6***(0.015 1) | |
Heterogeneity(IN) | 0.111 8***(0.008 0) | 0.121 3***(0.007 9) | 0.066 9***(0.007 9) | 0.068 9***(0.007 6) | 0.108 6***(0.006 4) | ||
Sender(GDP) | 0.278 9***(0.003 0) | 0.308 0***(0.004 1) | 0.201 5***(0.006 0) | 0.202 5***(0.005 8) | 0.304 7***(0.004 9) | ||
Sender(Prody) | 0.152 3***(0.054 5) | 0.208 3***(0.077 1) | 0.329 7***(0.073 1) | 0.328 8***(0.074 2) | 0.199 2**(0.089 0) | ||
Sender(FDI) | 0.044 3***(0.015 9) | 0.046 8***(0.013 3) | 0.039 0***(0.014 6) | 0.040 2***(0.015 6) | 0.041 8***(0.012 9) | ||
Receiver(GDP) | -0.033 3***(0.006 3) | -0.014 0†(0.008 7) | -0.004 1(0.006 0) | -0.010 1*(0.005 8) | 0.025 8**(0.010 4) | ||
Receiver(Prody) | -0.146 1***(0.044 2) | -0.110 0(0.062 8) | 0.005 5(0.057 5) | 0.001 7(0.059 6) | -0.092 4(0.065 5) | ||
Receiver(FDI) | -0.052 4***(0.007 1) | -0.059 1***(0.007 5) | -0.021 3*(0.012 8) | -0.022 8*(0.012 7) | -0.052 1***(0.008 5) | ||
Dcov(TF) | 0.196 8***(0.019 8) | 0.086 9***(0.031 5) | 0.044 5(0.036 2) | 0.045 4(0.037 8) | 0.109 5***(0.037 2) | ||
Dcov(CP) | -0.041 2**(0.017 7) | -0.122 7***(0.025 9) | -0.059 9**(0.027 5) | -0.057 8**(0.028 4) | -0.149 6***(0.029 7) | ||
外部网络嵌入效应 | ECov(GDN) | -0.961 1***(0.010 5) | -0.607 8***(0.017 3) | -0.587 3***(0.017 2) | -1.136 6***(0.009 9) | ||
ECov(COL) | 0.656 5***(0.018 3) | 0.429 7***(0.024 1) | 0.416 3***(0.024 6) | 0.771 9***(0.019 1) | |||
ECov(RTAD) | 0.022 9***(0.007 6) | 0.026 0***(0.008 8) | 0.077 9***(0.024 0) | 0.027 6***(0.009 1) | |||
ECov(BITs) | 0.220 0***(0.014 2) | 0.132 1***(0.021 9) | 0.125 4***(0.022 9) | 0.264 9***(0.016 3) | |||
ECov(IDN) | -0.076 6***(0.007 7) | -0.053 1***(0.008 1) | -0.051 8***(0.008 4) | -0.087 5***(0.008 5) | |||
ECov(COR) | 0.089 7***(0.025 9) | 0.083 1***(0.031 5) | 0.082 3**(0.032 0) | 0.107 2***(0.030 4) | |||
ECov(COC) | 0.533 7***(0.022 4) | 0.342 3***(0.028 8) | 0.332 2***(0.027 2) | 0.621 5***(0.025 9) |
Tab.3 Benchmark model regression results of TERGM
效应 | 变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|---|
Edges | -2.000 6***(0.050 7) | -5.747 6***(0.223 1) | 2.699 6***(0.299 3) | 0.864 7**(0.317 2) | 0.725 3*(0.318 3) | 4.012 0***(0.363 3) | |
内生结构依赖效应 | Mutual | 1.921 6*** (0.013 6) | 1.651 5***(0.019 0) | 1.031 4***(0.024 6) | 0.706 0***(0.021 8) | 0.554 5***(0.029 4) | |
Cyclicalties | -0.234 3*** (0.023 8) | -0.155 7***(0.021 7) | -0.147 0***(0.022 7) | -0.119 3***(0.023 8) | -0.124 1***(0.023 0) | ||
Transitiveties | 0.240 9*** (0.026 0) | 0.222 7***(0.026 0) | 0.192 1***(0.029 4) | 0.141 3***(0.035 6) | 0.140 5***(0.035 4) | ||
Stability | 1.419 1***(0.011 3) | 1.410 5***(0.011 5) | |||||
Variability | -0.020 1***(0.005 1) | -0.019 9***(0.005 4) | |||||
Delrecip | 0.283 3***(0.026 2) | ||||||
国家属性效应 | Homophily(REG) | 1.302 4***(0.013 6) | 0.371 5***(0.013 6) | 0.259 9***(0.014 3) | 0.250 7***(0.015 1) | 0.439 6***(0.015 1) | |
Heterogeneity(IN) | 0.111 8***(0.008 0) | 0.121 3***(0.007 9) | 0.066 9***(0.007 9) | 0.068 9***(0.007 6) | 0.108 6***(0.006 4) | ||
Sender(GDP) | 0.278 9***(0.003 0) | 0.308 0***(0.004 1) | 0.201 5***(0.006 0) | 0.202 5***(0.005 8) | 0.304 7***(0.004 9) | ||
Sender(Prody) | 0.152 3***(0.054 5) | 0.208 3***(0.077 1) | 0.329 7***(0.073 1) | 0.328 8***(0.074 2) | 0.199 2**(0.089 0) | ||
Sender(FDI) | 0.044 3***(0.015 9) | 0.046 8***(0.013 3) | 0.039 0***(0.014 6) | 0.040 2***(0.015 6) | 0.041 8***(0.012 9) | ||
Receiver(GDP) | -0.033 3***(0.006 3) | -0.014 0†(0.008 7) | -0.004 1(0.006 0) | -0.010 1*(0.005 8) | 0.025 8**(0.010 4) | ||
Receiver(Prody) | -0.146 1***(0.044 2) | -0.110 0(0.062 8) | 0.005 5(0.057 5) | 0.001 7(0.059 6) | -0.092 4(0.065 5) | ||
Receiver(FDI) | -0.052 4***(0.007 1) | -0.059 1***(0.007 5) | -0.021 3*(0.012 8) | -0.022 8*(0.012 7) | -0.052 1***(0.008 5) | ||
Dcov(TF) | 0.196 8***(0.019 8) | 0.086 9***(0.031 5) | 0.044 5(0.036 2) | 0.045 4(0.037 8) | 0.109 5***(0.037 2) | ||
Dcov(CP) | -0.041 2**(0.017 7) | -0.122 7***(0.025 9) | -0.059 9**(0.027 5) | -0.057 8**(0.028 4) | -0.149 6***(0.029 7) | ||
外部网络嵌入效应 | ECov(GDN) | -0.961 1***(0.010 5) | -0.607 8***(0.017 3) | -0.587 3***(0.017 2) | -1.136 6***(0.009 9) | ||
ECov(COL) | 0.656 5***(0.018 3) | 0.429 7***(0.024 1) | 0.416 3***(0.024 6) | 0.771 9***(0.019 1) | |||
ECov(RTAD) | 0.022 9***(0.007 6) | 0.026 0***(0.008 8) | 0.077 9***(0.024 0) | 0.027 6***(0.009 1) | |||
ECov(BITs) | 0.220 0***(0.014 2) | 0.132 1***(0.021 9) | 0.125 4***(0.022 9) | 0.264 9***(0.016 3) | |||
ECov(IDN) | -0.076 6***(0.007 7) | -0.053 1***(0.008 1) | -0.051 8***(0.008 4) | -0.087 5***(0.008 5) | |||
ECov(COR) | 0.089 7***(0.025 9) | 0.083 1***(0.031 5) | 0.082 3**(0.032 0) | 0.107 2***(0.030 4) | |||
ECov(COC) | 0.533 7***(0.022 4) | 0.342 3***(0.028 8) | 0.332 2***(0.027 2) | 0.621 5***(0.025 9) |
变量 | 模型7 | 模型8 | 模型9 | 模型10 | 模型11 | 模型12 | 模型13 |
---|---|---|---|---|---|---|---|
2000—2006 | 2007—2012 | 2013—2019 | ICT | 非ICT | 最终品 | 中间品 | |
Mutual | 0.554 6***(0.053 3) | 0.490 2***(0.057 8) | 0.545 8***(0.052 9) | 0.639 4***(0.037 9) | 0.572 1***(0.031 4) | 0.580 6***(0.035 9) | 0.550 9***(0.023 3) |
Cyclicalties | -0.071 1**(0.033 4) | -0.134 1***(0.035 8) | -0.201 7***(0.031 7) | -0.088 6***(0.014 8) | -0.074 9**(0.025 0) | -0.084 4**(0.025 9) | -0.088 9***(0.011 8) |
Transitiveties | 0.353 8***(0.057 3) | 0.199 3***(0.062 4) | 0.248 2***(0.062 7) | 0.177 8***(0.037 5) | 0.228 4***(0.035 1) | 0.228 8***(0.035 0) | 0.178 7***(0.041 2) |
Stability | 1.387 0***(0.013 4) | 1.391 1***(0.014 3) | 1.460 6***(0.013 0) | 1.349 5***(0.010 4) | 1.429 6***(0.010 7) | 1.412 6***(0.015 6) | 1.414 8***(0.010 7) |
Variability | -0.053 5***(0.010 8) | -0.022 9**(0.009 7) | -0.043 6***(0.007 5) | -0.017 2***(0.004 6) | -0.023 9***(0.005 0) | -0.022 0***(0.004 2) | -0.009 8† (0.0067) |
Delrecip | 0.340 3***(0.043 5) | 0.258 5***(0.046 5) | 0.236 5***(0.044 0) | 0.266 8***(0.027 4) | 0.298 3***(0.025 9) | 0.301 0***(0.023 7) | 0.290 3***(0.019 8) |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
N | 82 836 | 69 030 | 82 836 | 262 314 | 262 314 | 262 314 | 262 314 |
Tab.4 Time heterogeneity and product heterogeneity
变量 | 模型7 | 模型8 | 模型9 | 模型10 | 模型11 | 模型12 | 模型13 |
---|---|---|---|---|---|---|---|
2000—2006 | 2007—2012 | 2013—2019 | ICT | 非ICT | 最终品 | 中间品 | |
Mutual | 0.554 6***(0.053 3) | 0.490 2***(0.057 8) | 0.545 8***(0.052 9) | 0.639 4***(0.037 9) | 0.572 1***(0.031 4) | 0.580 6***(0.035 9) | 0.550 9***(0.023 3) |
Cyclicalties | -0.071 1**(0.033 4) | -0.134 1***(0.035 8) | -0.201 7***(0.031 7) | -0.088 6***(0.014 8) | -0.074 9**(0.025 0) | -0.084 4**(0.025 9) | -0.088 9***(0.011 8) |
Transitiveties | 0.353 8***(0.057 3) | 0.199 3***(0.062 4) | 0.248 2***(0.062 7) | 0.177 8***(0.037 5) | 0.228 4***(0.035 1) | 0.228 8***(0.035 0) | 0.178 7***(0.041 2) |
Stability | 1.387 0***(0.013 4) | 1.391 1***(0.014 3) | 1.460 6***(0.013 0) | 1.349 5***(0.010 4) | 1.429 6***(0.010 7) | 1.412 6***(0.015 6) | 1.414 8***(0.010 7) |
Variability | -0.053 5***(0.010 8) | -0.022 9**(0.009 7) | -0.043 6***(0.007 5) | -0.017 2***(0.004 6) | -0.023 9***(0.005 0) | -0.022 0***(0.004 2) | -0.009 8† (0.0067) |
Delrecip | 0.340 3***(0.043 5) | 0.258 5***(0.046 5) | 0.236 5***(0.044 0) | 0.266 8***(0.027 4) | 0.298 3***(0.025 9) | 0.301 0***(0.023 7) | 0.290 3***(0.019 8) |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
N | 82 836 | 69 030 | 82 836 | 262 314 | 262 314 | 262 314 | 262 314 |
1 | 周念利,陈寰琦. RTAs框架下美式数字贸易规则的数字贸易效应研究. 世界经济,2020,43(10):28-51. |
ZHOU N, CHEN H. Research on the digital trade effects of american-style digital trade rules under rtas framework. The Journal of World Economy, 2020,43(10):28-51. | |
2 | 杨连星,王秋硕,张秀敏.自由贸易协定深化、数字贸易规则与数字贸易发展.世界经济,2023,46(4):32-59. |
YANG L, WANG Q, ZHANG X. Deepening free trade agreements, digital trade rules and digital trade development. The Journal of World Economy, 2023,46(4):32-59. | |
3 | 马丹,唐佳琦.全球数字价值链增加值的测算及变动因素分析.统计研究,2023,40(6):3-19. |
MA D, TANG J. Accounting the global digital value chains and the driving factors analysis. Statistical Research,2023,40(6):3-19. | |
4 | 王璐,刘曙光,段佩利,等. 丝绸之路经济带沿线国家农产品贸易网络结构特征. 经济地理,2019,39(9):198-206. |
WANG L, LIU S, DUAN P, et al. Network structure of agricultural product trade in countries of the Silk Road Economic Belt. Economy Geography, 2019,39(9):198-206. | |
5 | 陈友余,宋怡佳."一带一路"沿线国家数字服务贸易格局及中国地位分析.经济地理,2023,43(6):106-117. |
CHEN L, SONG Y. Digital service trade pattern of countries along the Belt and Road and China's status. Economic Geography,2023,43(6):106-117. | |
6 | 贺胜兵,许宸昊,周华蓉."一带一路"工业机器人贸易网络特征及演化机制.中国软科学,2023(6):43-55. |
HE S, XU C, ZHOU H. Research on characteristics and evolution mechanism of industrial robot trade network among the Belt and Road countries. China Soft Science,2023(6):43-55. | |
7 | 吕延方,方若楠,王冬. 全球数字服务贸易网络的拓扑结构特征及影响机制. 数量经济技术经济研究,2021,38(10):128-147. |
LV Y, FANG R, WANG D. Analysis on the topological structure characteristics and influence mechannism of global digital service trade network. Journal of quantitative & technological economics, 2021,38(10):128-147. | |
8 | 耿伟,吴雪洁,叶品良.数字服务贸易网络对出口国内增加值的影响——来自跨国数据的经验证据.国际贸易问题,2022(12):90-110. |
GENG W, WU X, YE P. The impact of digital service trade network on the domestic value added in exports ——Evidence from cross-country data. Journal of International Trade,2022(12):90-110. | |
9 | 牛华,兰森,马艳昕. "一带一路"沿线国家服务贸易网络结构动态演进及影响机制. 国际商务(对外经济贸易大学学报),2020(5):78-93. |
NIU H, LAN S, MA Y. The dynamic evolution and influence mechanism of services trade network structure along"the Belt and Road". International Business,2020(5):78-93. | |
10 | YU C, ZHANG R, AN L, et al. Has China's belt and road initiative intensified bilateral trade links between China and the involved countries?. Sustainability, 2020, 12(17): 6747. |
11 | 许和连,孙天阳,成丽红."一带一路"高端制造业贸易格局及影响因素研究:基于复杂网络的指数随机图分析.财贸经济,2015(12):74-88. |
XU H, SUN T, CHENG L. Trade patterns and influence factors of high-end manufacturing on "One Belt and One Road"--A study based on the exponential random graph models. Finance & Trade Economics,2015(12):74-88. | |
12 | FENG L, XU H, WU G, et al. Exploring the structure and influence factors of trade competitive advantage network along the Belt and Road. Physica A: Statistical Mechanics and its Applications, 2020, 559: 125057. |
13 | 唐晓彬,崔茂生."一带一路"货物贸易网络结构动态变化及其影响机制.财经研究,2020(7):138-153. |
TANG X, CUI M, Research on the Dynamic Change of Goods Trade Network Structure and Its Impact Mechanism of Countries along the Belt and Road. Journal of Finance and Economics,2020(7):138-153. | |
14 | 刘林青,闫小斐,杨理斯,等. 国际贸易依赖网络的演进及内生机制研究. 中国工业经济,2021(2):98-116. |
LIU L, YAN X, YANG L, et al. Research on the evolution and endogenous mechanism of international trade dependence network. China Industrial Economics,2021(2):98-116. | |
15 | CHANEY T. The network structure of international trade. American Economic Review, 2014,104: 3600-3634. |
16 | KRIVITSKY P N, HANDCOCK M S. A separable model for dynamic networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2014, 76(1): 29-46. |
17 | LEIFELD P, CRANMER S J. A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science, 2019, 7(1):20-51. |
18 | PAN Z. Varieties of intergovernmental organization memberships and structural effects in the world trade network. Advances in Complex Systes, 2018, 21(2): 1-30. |
19 | LEIFELD P, CRANMER S J, DESMARAIS B A. Temporal exponential random graph models with Btergm: Estimation and bootstrap confidence intervals. Journal of Statistical Software, 2018, 83(6): 1-36. |
20 | IAPADRE L. Regional integration agreements and the geography of world trade: Statistical indicators and empirical evidence.UNU Insitute on Comparative Regional Integration Studies, 2004. |
21 | 刘佳琪,孙浦阳. 数字产品进口如何有效促进企业创新——基于中国微观企业的经验分析. 国际贸易问题,2021(8):38-53. |
LIU J, SUN P, How does digital product import effectively promote enterprise innovation—Based on an empirical analysis of micro enterprises in China. Journal of International Trade,2021(8):38-53. | |
22 | HAUSMANN R, HWANG J, RODRIK D. What you export matters. Journal of Economic Growth, 2007, 12(1): 1-25. |
23 | 戴魁早.要素市场扭曲如何影响出口技术复杂度?——中国高技术产业的经验证据.经济学(季刊),2018,18(1):337-366. |
DAI K. How does factor market distortions affect export technical sophistication—An empirical evidence of China's high technology industries. China Economic Quarterly,2018,18(1):337-366. | |
24 | 党琳,李雪松,申烁. 制造业行业数字化转型与其出口技术复杂度提升. 国际贸易问题,2021(6):32-47. |
DANG L, LI X, SHEN S, Manufacturing digital transformation and its export technological sophistication. Journal of International Trade,2021(6):32-47. | |
25 | BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): P10008. |
26 | GIRVAN M, NEWMAN M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 2012, 99(12): 7821-7826. |
27 | WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks. Nature, 1998, 393(6684): 440-442. |
28 | 杨丹辉,渠慎宁. 百年未有之大变局下全球价值链重构及国际生产体系调整方向. 经济纵横,2021(3):61-71. |
YANG D, QU S, The restructuring of global value chains and the adjustment direction of the international production system under changes unseen in a century. Economic Review Journal,2021(3):61-71. | |
29 | DAVIS J, GOADRICH M. The relationship between Precision-Recall and ROC curves.Proceedings of the 23rd international conference on Machine learning, 2006: 233-240. |
30 | 李敬,刘洋.中国国民经济循环:结构与区域网络关系透视.经济研究,2022,57(2):27-42. |
LI J,LIU Y, China's national economic circulation: A perspective of the structural and regional network relation. Economic Research,2022,57(2):27-42. |
[1] | Ziran JIANG, Chensheng LI, Jinping PANG, Huayou ZHU. Port trade resilience development along the 21st Century Maritime Silk Road and China's strategic response [J]. World Regional Studies, 2024, 33(8): 1-13. |
[2] | Jiaqi ZHANG, Cheng YU, Qiushi SHEN. Study on spatial differentiation characteristics of eco-environmental effects of land use change in Tanzania [J]. World Regional Studies, 2024, 33(7): 59-72. |
[3] | Cuihong MA. The potential and path choice of the strategic docking between "the Belt and Road" initiative and the "Connect Papua New Guinea" strategy [J]. World Regional Studies, 2024, 33(7): 73-85. |
[4] | Rui CHEN, Yi LIU, Ximing YANG. Multi-scalar dynamics of Qiaoxiang culture: [J]. World Regional Studies, 2023, 32(6): 131-141. |
[5] | Kongchao ZHU, Yuan ZHAO, Siyou XIA, Qifan XIA, Panpan CUI. Evolution of the petroleum products trade network of countries along the "Belt and Road" [J]. World Regional Studies, 2023, 32(6): 28-38. |
[6] | Xu YIN, Peng LI, Zhiming FENG, Zhen YOU, Chiwei XIAO. Characteristics of spatio-temporal differences and evolution types of Vietnamese population from 2000 to 2019 [J]. World Regional Studies, 2022, 31(5): 941-952. |
[7] | Man SUN, Tao SONG, Qidi JI. Research on the industrial evolution and its mechanism in border towns [J]. World Regional Studies, 2022, 31(2): 388-398. |
[8] | Yuyan YAO, Yifei ZHANG, Ziyang JIN, Ye JIANG. Study on the green trade cooperation and competition pattern of the "Belt and Road" [J]. World Regional Studies, 2021, 30(4): 792-801. |
[9] | Chengliang LIU, Debin DU, Yuan LI. The teaching model of world geography ideological and political course serving the "Belt and Road" [J]. World Regional Studies, 2021, 30(4): 873-881. |
[10] | Zhiding HU, Yuejing GE, Debin DU, Yuli LIU. China's geopolitical strategy on the way to the great rejuvenation: The National Neighborland Theory [J]. World Regional Studies, 2021, 30(3): 443-453. |
[11] | Yu DU, Huiming ZONG. The evolution and influencing factors of spatial pattern of trade between Chongqing and ASEAN countries under the background of “The Belt and Road Initiative” [J]. World Regional Studies, 2020, 29(4): 697-707. |
[12] | Yuliya SUVALOVA, Luqi LI, Xiang KONG. Study on Turkmenistan’s Foreign Direct Investment environment [J]. World Regional Studies, 2020, 29(2): 327-336. |
[13] | Wanpeng CAO, Yongchun YANG, Xiaorong JIANG, Enlong LI. The policy responses to the Belt and Road Initiative in five provinces (districts) of Northwest China based on industry perspective [J]. World Regional Studies, 2020, 29(2): 346-357. |
[14] | Xiaoping ZHANG, Shanshan GAO, Mingxing CHEN, Weidong LIU. A preliminary discussion [J]. World Regional Studies, 2020, 29(1): 8-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||