世界地理研究 ›› 2019, Vol. 28 ›› Issue (6): 132-144.DOI: 10.3969/j.issn.1004-9479.2019.06.2018333
收稿日期:
2018-08-02
修回日期:
2018-10-23
出版日期:
2019-12-15
发布日期:
2020-03-27
通讯作者:
王宁
作者简介:
黎恒(1993-),男,硕士研究生,主要研究方向为碳排放、循环经济,E-mail:18801127896@163.com。
基金资助:
Heng LI1(), Ning WANG1,2(), Zongshui WANG1,3, Wentao LIU1
Received:
2018-08-02
Revised:
2018-10-23
Online:
2019-12-15
Published:
2020-03-27
Contact:
Ning WANG
摘要:
温室气体减排已成为世界各国的共识,碳足迹分析作为温室气体管理的工具,在过去二十多年来发展迅速,然而国内外现有研究缺乏对其演化发展的归纳总结。因此,本文选取Web of science收录的期刊数据为研究对象,检索出1996—2017年有关碳足迹的相关文献8840篇,并对此进行了定性和定量分析。结果表明:①美国对碳足迹文献的贡献最大,拥有2275篇出版物以及最高的h指数(83)和被引频次(34803);②中国和印度等发展中国家近10年发文量增长显著,都位于全球发文量前十的国家中;③荷兰的h指数占总出版物的比重最大;④加利福尼亚大学是该领域最具生产力的机构,拥有222篇出版物,且国际合作水平显著。最后,论文将碳足迹研究分为三个阶段,基于关键词共现分析,厘清碳足迹研究的热点变化,并预测其未来研究趋势。
黎恒, 王宁, 王宗水, 刘文涛. 碳足迹研究现状与演变:基于社会网络视角分析[J]. 世界地理研究, 2019, 28(6): 132-144.
Heng LI, Ning WANG, Zongshui WANG, Wentao LIU. Research status and evolution trend of carbon footprint: Based on social network perspective[J]. World Regional Studies, 2019, 28(6): 132-144.
序号 | 学科方向 | TP | TP R(%) |
---|---|---|---|
1 | 环境科学生态学(Environmental Sciences and Ecology) | 4841 | 54.76 |
2 | 工程学(Engineering) | 4243 | 48.00 |
3 | 商业经济学(Business Economics) | 3009 | 34.04 |
4 | 能源燃料(Energy Fuels) | 2655 | 30.03 |
5 | 科学技术其他课题(Science Technology Other Topics) | 1987 | 22.48 |
6 | 气象大气科学(Meteorology Atmospheric Sciences) | 1466 | 16.58 |
7 | 农业(Agriculture) | 1448 | 16.38 |
8 | 计算机科学(Computer Science) | 1415 | 16.01 |
9 | 数学(Mathematics) | 908 | 10.27 |
10 | 材料科学(Materials Science) | 855 | 9.67 |
表1 1996—2017年碳足迹研究主要学科
Tab.1 Major research subjects of carbon footprint during 1996-2017
序号 | 学科方向 | TP | TP R(%) |
---|---|---|---|
1 | 环境科学生态学(Environmental Sciences and Ecology) | 4841 | 54.76 |
2 | 工程学(Engineering) | 4243 | 48.00 |
3 | 商业经济学(Business Economics) | 3009 | 34.04 |
4 | 能源燃料(Energy Fuels) | 2655 | 30.03 |
5 | 科学技术其他课题(Science Technology Other Topics) | 1987 | 22.48 |
6 | 气象大气科学(Meteorology Atmospheric Sciences) | 1466 | 16.58 |
7 | 农业(Agriculture) | 1448 | 16.38 |
8 | 计算机科学(Computer Science) | 1415 | 16.01 |
9 | 数学(Mathematics) | 908 | 10.27 |
10 | 材料科学(Materials Science) | 855 | 9.67 |
序号 | 机构名称 | 国家 | TP | TP RW(%) | TP RC(%) | TC | h-index |
---|---|---|---|---|---|---|---|
1 | 加利福尼亚大学 | 美国 | 222 | 2.51 | 9.75 | 5249 | 39 |
2 | 中国科学院 | 中国 | 174 | 1.97 | 10.18 | 2546 | 26 |
3 | 美国能源部 | 美国 | 120 | 1.36 | 5.27 | 2710 | 32 |
4 | 佛罗里达州立大学 | 美国 | 88 | 1.00 | 3.86 | 1890 | 24 |
5 | 马里兰大学 | 美国 | 84 | 0.95 | 3.69 | 3123 | 29 |
6 | 美国国家航空航天局 | 美国 | 81 | 0.92 | 3.56 | 3729 | 32 |
7 | 法国国家科学研究院 | 法国 | 77 | 0.87 | 28.31 | 1785 | 23 |
8 | 挪威科技大学 | 挪威 | 76 | 0.86 | 43.68 | 2023 | 25 |
9 | 美国农业部 | 美国 | 72 | 0.81 | 3.16 | 2722 | 28 |
10 | 悉尼大学 | 澳大利亚 | 69 | 0.78 | 13.45 | 3298 | 29 |
表2 1996—2017年碳足迹领域主要发文机构
Tab.2 The major issuing agencies in the field of carbon footprint during 1996-2017
序号 | 机构名称 | 国家 | TP | TP RW(%) | TP RC(%) | TC | h-index |
---|---|---|---|---|---|---|---|
1 | 加利福尼亚大学 | 美国 | 222 | 2.51 | 9.75 | 5249 | 39 |
2 | 中国科学院 | 中国 | 174 | 1.97 | 10.18 | 2546 | 26 |
3 | 美国能源部 | 美国 | 120 | 1.36 | 5.27 | 2710 | 32 |
4 | 佛罗里达州立大学 | 美国 | 88 | 1.00 | 3.86 | 1890 | 24 |
5 | 马里兰大学 | 美国 | 84 | 0.95 | 3.69 | 3123 | 29 |
6 | 美国国家航空航天局 | 美国 | 81 | 0.92 | 3.56 | 3729 | 32 |
7 | 法国国家科学研究院 | 法国 | 77 | 0.87 | 28.31 | 1785 | 23 |
8 | 挪威科技大学 | 挪威 | 76 | 0.86 | 43.68 | 2023 | 25 |
9 | 美国农业部 | 美国 | 72 | 0.81 | 3.16 | 2722 | 28 |
10 | 悉尼大学 | 澳大利亚 | 69 | 0.78 | 13.45 | 3298 | 29 |
序号 | 期刊 | TP | TP R(%) | h-index | IF(2016-2017) |
---|---|---|---|---|---|
1 | Journal of Cleaner Production | 511 | 5.93 | 38 | 5.715 |
2 | International Journal of Life Cycle Assessment | 111 | 1.29 | 27 | 3.173 |
3 | Applied Energy | 105 | 1.22 | 28 | 7.182 |
4 | Sustainability | 103 | 1.20 | 14 | 1.789 |
5 | Journal of Industrial Ecology | 84 | 0.98 | 22 | 4.123 |
6 | Agricultural and Forest Meteorology | 73 | 0.85 | 29 | 3.887 |
7 | Ecological Economics | 71 | 0.82 | 32 | 2.965 |
8 | Ecological Indicators | 71 | 0.82 | 21 | 3.898 |
9 | Energy Policy | 69 | 0.80 | 25 | 4.140 |
10 | Renewable & Sustainable Energy Reviews | 65 | 0.76 | 22 | 8.058 |
表3 1996-2017年碳足迹领域主要期刊
Tab.3 The major journals in the field of carbon footprint during 1996-2017
序号 | 期刊 | TP | TP R(%) | h-index | IF(2016-2017) |
---|---|---|---|---|---|
1 | Journal of Cleaner Production | 511 | 5.93 | 38 | 5.715 |
2 | International Journal of Life Cycle Assessment | 111 | 1.29 | 27 | 3.173 |
3 | Applied Energy | 105 | 1.22 | 28 | 7.182 |
4 | Sustainability | 103 | 1.20 | 14 | 1.789 |
5 | Journal of Industrial Ecology | 84 | 0.98 | 22 | 4.123 |
6 | Agricultural and Forest Meteorology | 73 | 0.85 | 29 | 3.887 |
7 | Ecological Economics | 71 | 0.82 | 32 | 2.965 |
8 | Ecological Indicators | 71 | 0.82 | 21 | 3.898 |
9 | Energy Policy | 69 | 0.80 | 25 | 4.140 |
10 | Renewable & Sustainable Energy Reviews | 65 | 0.76 | 22 | 8.058 |
关键词 | 总频次 | 排名 | 频次 | |||||
---|---|---|---|---|---|---|---|---|
阶段一 | 阶段二 | 阶段三 | 阶段一 | 阶段二 | 阶段三 | |||
足迹类 | carbon footprint | 1366 | 24 | 1 | 1 | 3 | 516 | 847 |
water footprint | 70 | - | 28 | 17 | 15 | 55 | ||
ecological footprint | 122 | 1 | 9 | 19 | 25 | 45 | 52 | |
方法技术类 | LCA | 799 | 72 | 2 | 2 | 2 | 249 | 548 |
input-output analysis | 149 | 5 | 10 | 8 | 9 | 44 | 96 | |
CCS | 97 | - | 17 | 13 | 28 | 69 | ||
optimization | 69 | - | 28 | 18 | 1 | 15 | 53 | |
industrial ecology | 76 | - | 17 | 20 | 1 | 28 | 47 | |
lidar | 88 | 6 | 12 | 21 | 8 | 35 | 45 | |
cloud computing | 47 | - | 41 | 24 | 10 | 37 | ||
eddy covariance | 80 | 2 | 15 | 26 | 18 | 31 | 31 | |
环境类 | GHG emissions | 490 | 10 | 3 | 3 | 6 | 159 | 325 |
sustainability | 481 | 9 | 4 | 4 | 7 | 158 | 316 | |
carbon emissions | 298 | 4 | 5 | 5 | 10 | 122 | 166 | |
climate change | 263 | 25 | 6 | 6 | 3 | 97 | 163 | |
environmental impact | 119 | 9 | 14 | 10 | 7 | 33 | 79 | |
global warming | 110 | - | 8 | 15 | 49 | 61 | ||
能源类 | energy efficiency | 142 | - | 7 | 9 | 51 | 91 | |
renewable energy | 97 | - | 21 | 11 | 21 | 76 | ||
energy consumption | 93 | - | 21 | 12 | 21 | 72 | ||
biomass | 105 | 6 | 14 | 14 | 8 | 33 | 64 | |
methane | 63 | 13 | 18 | 25 | 4 | 26 | 33 | |
waste water | 44 | - | 25 | 28 | 18 | 26 | ||
其他 | supply chain | 135 | - | 11 | 7 | 36 | 99 | |
China | 71 | - | 29 | 16 | 14 | 57 | ||
land use | 64 | 25 | 23 | 22 | 3 | 19 | 42 | |
agriculture | 57 | - | 25 | 23 | 1 | 18 | 38 | |
uncertainty | 40 | - | 44 | 27 | 10 | 30 | ||
fly ash | 26 | - | - | 29 | 26 | |||
international trade | 37 | - | 46 | 30 | 1 | 9 | 25 |
表4 三阶段主要关键词排名变化
Tab.4 Change in the ranking of major keywords across three stages
关键词 | 总频次 | 排名 | 频次 | |||||
---|---|---|---|---|---|---|---|---|
阶段一 | 阶段二 | 阶段三 | 阶段一 | 阶段二 | 阶段三 | |||
足迹类 | carbon footprint | 1366 | 24 | 1 | 1 | 3 | 516 | 847 |
water footprint | 70 | - | 28 | 17 | 15 | 55 | ||
ecological footprint | 122 | 1 | 9 | 19 | 25 | 45 | 52 | |
方法技术类 | LCA | 799 | 72 | 2 | 2 | 2 | 249 | 548 |
input-output analysis | 149 | 5 | 10 | 8 | 9 | 44 | 96 | |
CCS | 97 | - | 17 | 13 | 28 | 69 | ||
optimization | 69 | - | 28 | 18 | 1 | 15 | 53 | |
industrial ecology | 76 | - | 17 | 20 | 1 | 28 | 47 | |
lidar | 88 | 6 | 12 | 21 | 8 | 35 | 45 | |
cloud computing | 47 | - | 41 | 24 | 10 | 37 | ||
eddy covariance | 80 | 2 | 15 | 26 | 18 | 31 | 31 | |
环境类 | GHG emissions | 490 | 10 | 3 | 3 | 6 | 159 | 325 |
sustainability | 481 | 9 | 4 | 4 | 7 | 158 | 316 | |
carbon emissions | 298 | 4 | 5 | 5 | 10 | 122 | 166 | |
climate change | 263 | 25 | 6 | 6 | 3 | 97 | 163 | |
environmental impact | 119 | 9 | 14 | 10 | 7 | 33 | 79 | |
global warming | 110 | - | 8 | 15 | 49 | 61 | ||
能源类 | energy efficiency | 142 | - | 7 | 9 | 51 | 91 | |
renewable energy | 97 | - | 21 | 11 | 21 | 76 | ||
energy consumption | 93 | - | 21 | 12 | 21 | 72 | ||
biomass | 105 | 6 | 14 | 14 | 8 | 33 | 64 | |
methane | 63 | 13 | 18 | 25 | 4 | 26 | 33 | |
waste water | 44 | - | 25 | 28 | 18 | 26 | ||
其他 | supply chain | 135 | - | 11 | 7 | 36 | 99 | |
China | 71 | - | 29 | 16 | 14 | 57 | ||
land use | 64 | 25 | 23 | 22 | 3 | 19 | 42 | |
agriculture | 57 | - | 25 | 23 | 1 | 18 | 38 | |
uncertainty | 40 | - | 44 | 27 | 10 | 30 | ||
fly ash | 26 | - | - | 29 | 26 | |||
international trade | 37 | - | 46 | 30 | 1 | 9 | 25 |
1 | Hartmann D, Tank A, Rusticucci M. IPCC fifth assessment report, climate change 2013: the physical science basis. In: IPCC AR5; 2013. |
2 | Team C W, Pachauri R K, Meyer L A. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Journal of Romance Studies, 2014, 4(2):85-88. |
3 | Wackernagel M, Rees W. Our Ecological Footprint: reducing human impact on the earth. New Society Pub, 1996. |
4 | Pandey D, Agrawal M, Pandey J S. Carbon footprint: current methods of estimation. Environmental monitoring and assessment, 2011, 178(1-4): 135-160. |
5 | Gan Y, Liang C, Hamel C, et al. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agronomy for Sustainable Development, 2011, 31(4):643-656. |
6 | Liu C, Cutforth H, Chai Q, et al. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, 2016, 36(4):69. |
7 | 张丹,张卫峰.低碳农业与农作物碳足迹核算研究述评.资源科学, 2016,38(7):1395-1405. |
8 | Pirlo G. Cradle-to-farm gate analysis of milk carbon footprint: a descriptive review. Italian Journal of Animal Science, 2012, 11(1):108-118. |
9 | 师帅,李翠霞,李媚婷.畜牧业"碳排放"到"碳足迹"核算方法的研究进展.中国人口·资源与环境, 2017,27(6):36-41. |
10 | 王永琴,周叶,张荣.碳排放影响因子与碳足迹文献综述:基于研究方法视角.环境工程,2017,35(1):155-159. |
11 | 耿涌,董会娟,郗凤明,等.应对气候变化的碳足迹研究综述.中国人口·资源与环境,2010,20(10):6-12. |
12 | 王微,林剑艺,崔胜辉,等.碳足迹分析方法研究综述.环境科学与技术,2010,33(7):71-78. |
13 | Xu Z, Sun D W, Zhang Z, et al. Research developments in methods to reduce carbon footprint of cooking operations: A review. Trends in Food Science & Technology, 2015, 44(1):49-57. |
14 | 董雪旺,张捷,章锦河,等.区域旅游业碳排放和旅游消费碳足迹研究述评.生态学报,2016,36(2):554-568. |
15 | Nilsson A E, Aragonés M M, Torralvo F A, et al. A review of the carbon footprint of Cu and Zn production from primary and secondary sources. minerals, 2017,7(9):168. |
16 | Pritchard A. Statistical bibliography or bibliometrics?. Journal of Documentation, 1969,25(4):348-349. |
17 | 林聚仁. 社会网络分析:理论、方法与应用. 北京:北京师范大学出版社,2009. |
18 | Du H, Li B, Brown M A, et al. Expanding and shifting trends in carbon market research: a quantitative bibliometric study. Journal of Cleaner Production, 2015,103:104-111. |
19 | Mao G, Liu X, Du H, et al. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renewable & Sustainable Energy Reviews, 2015,48:276-286. |
20 | Hirsch J E. An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46):16569-16572. |
21 | Han M Y, Sui X, Huang Z L, et al. Bibliometric indicators for sustainable hydropower development. Ecological Indicators, 2014, 47:231-238. |
22 | Zheng T, Wang J, Wang Q, et al. A bibliometric analysis of micro/nano-bubble related research: current trends, present application, and future prospects. Scientometrics, 2016, 109(1):53-71. |
23 | Wiedmann T, Minx J. A Definition of 'Carbon Footprint. Journal of the Royal Society of Medicine, 2009, 92(4):193–195. |
24 | Wangaabcaa H. Global urbanization research from 1991 to 2009: A systematic research review. Landscape & Urban Planning, 2012, 104(3):299-309. |
25 | Dehdarirad T, Villarroya A, Barrios M. Research trends in gender differences in higher education and science: a co-word analysis. Scientometrics, 2014, 101(1):273-290. |
26 | Wang L, Wei Y M, Brown M A, et al. Global transition to low-carbon electricity: A bibliometric analysis. Applied Energy, 2017, 205:57-68. |
27 | Han M Y, Jia J Y, Wang W. Recent advances in organocatalytic asymmetric synthesis of polysubstituted pyrrolidines. Tetrahedron Letters, 2014, 55(4):784-794. |
28 | Weisser D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy, 2007, 32(9):1543-1559. |
29 | Page G, Ridoutt B, Bellotti B. Carbon and water footprint tradeoffs in fresh tomato production. Journal of Cleaner Production, 2012, 32(3):219-226. |
30 | Timmermann V, Dibdiakova J. Greenhouse gas emissions from forestry in East Norway. International Journal of Life Cycle Assessment, 2014, 19(9):1593-1606. |
31 | Karvounis P. A review of desalination potential in Greek Islands using renewable energy sources, a Life cycle assessment of different units. European Journal of Sustainable Development, 2017, 6(2):19-32. |
32 | Laitner J A. Linking energy efficiency to economic productivity: recommendation for improving the robustness of the American economy. ACEEE, report; 2013. |
33 | Brown M A, Baer P, Cox M, et al. Evaluating the risks of alternative energy policies: a case study of industrial energy efficiency. Energy Efficiency, 2014, 7(1):1-22. |
34 | Brown M A, Levine M D, Short W, et al. Scenarios for a clean energy future. Energy Policy,2001, 29:1179–96. |
35 | Brown M A, Wang Y. Green savings: how policies and markets drive energy efficiency. Praeger, 2015. |
36 | Du H, Wei L, Brown M A, et al. A bibliometric analysis of recent energy efficiency literatures: an expanding and shifting focus. Energy Efficiency, 2013, 6(1):177-190. |
37 | Chen J X, Chen J. Supply chain carbon footprinting and responsibility allocation under emission regulations. Journal of Environmental Management, 2017, 188:255-267. |
38 | Brandenburg M. A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects. Omega, 2017, 70:58-76. |
39 | Larsen H N, Solli C, Pettersena J. Supply Chain Management – How can We Reduce our Energy/Climate Footprint?. Energy Procedia, 2012, 20(20):354-363. |
40 | Kremer G E, Haapala K, Murat A, et al. Directions for instilling economic and environmental sustainability across product supply chains. Journal of Cleaner Production, 2016, 112:2066-2078. |
41 | Acquaye A, Feng K, Oppon E, et al. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. Journal of Environmental Management, 2017, 187:571-585. |
42 | Pishvaee M S, Razmi J, Torabi S A. Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets & Systems, 2012, 206(6):1-20. |
43 | You F, Tao L, Graziano D J, et al. Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input–output analysis. Aiche Journal, 2012, 58(4):1157-1180. |
44 | Devika K, Jafarian A, Nourbakhsh V. Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research, 2014, 235(3):594-615. |
45 | Santibañezaguilar J E, Gonzálezcampos J B, Ponceortega J M, et al. Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. Journal of Cleaner Production, 2014, 65:270-294. |
46 | Lohwasser R, Madlener R. Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe. Energy Economics, 2012, 34(3):850-863. |
47 | Chen W, Xu R. Clean coal technology development in China. Energy Policy, 2010, 38(5):2123-2130. |
48 | Cormos C C. Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy, 2012, 42(1):434-445. |
49 | Arranz A M. Hype among low-carbon technologies: Carbon capture and storage in comparison. Global Environmental Change, 2016, 41:124-141. |
50 | Xi Z J, Zheng D, Yue M. Carbon footprint analysis of a combined cooling heating and power system. Energy Conversion & Management, 2015, 103:36-42. |
51 | Narayan A, Ponnambalam K. Risk-averse stochastic programming approach for microgrid planning under uncertainty. Renewable Energy, 2017, 101:399-408. |
52 | Du S, Hu L, Song M. Production optimization considering environmental performance and preference in the cap-and-trade system. Journal of Cleaner Production, 2016, 112:1600-1607. |
53 | Ba K, Dellagi S, Rezg N, et al. Joint optimization of preventive maintenance and spare parts inventory for an optimal production plan with consideration of CO2 emission. Reliability Engineering & System Safety, 2016, 149:172-186. |
54 | Shenoy U V. Targeting and design of energy allocation networks for carbon emission reduction. Chemical Engineering Science, 2010, 65(23):6155-6168. |
[1] | 沈泽洲, 王承云. 上海参与全球科技创新网络地位研究[J]. 世界地理研究, 2023, 32(2): 93-103. |
[2] | 闫姗姗, 刘承良. 中国对外技术转移网络的空间演化及其影响因素[J]. 世界地理研究, 2023, 32(1): 19-30. |
[3] | 李文辉, 邱晓晴. 基于社会网络的城市疫情空间扩散及治理研究[J]. 世界地理研究, 2022, 31(3): 637-648. |
[4] | 郑晴晴, 周素红, 文萍. 边界效应下居民跨珠海-澳门边界活动特征与机制分析[J]. 世界地理研究, 2022, 31(3): 662-672. |
[5] | 王瑞莉, 刘玉, 王成新, 李梦程, 唐永超, 薛明月. 黄河流域经济联系及其网络结构演变研究[J]. 世界地理研究, 2022, 31(3): 527-537. |
[6] | 吴丽君, 朱宇, 颜俊, 柯文前, 林李月. “一带一路”沿线国家或地区间人口迁移的空间格局及其演化特征[J]. 世界地理研究, 2022, 31(2): 249-258. |
[7] | 杨雨, 盛科荣. 中国城市网络关联格局的演变及影响因素:基于企业网络视角[J]. 世界地理研究, 2021, 30(6): 1208-1218. |
[8] | 林锦屏, 周美岐, 易琦, 钟竺君, 季文华. 近代德国地理学的理论与贡献[J]. 世界地理研究, 2021, 30(5): 957-965. |
[9] | 赵蕾, 韦素琼, 游小珺. 基于SNA的全球电子信息制造业贸易网络演化特征及机理研究[J]. 世界地理研究, 2021, 30(4): 708-720. |
[10] | 韩剑磊, 明庆忠, 史鹏飞, 骆登山. 多维“流”视角下区域旅游网络结构特征及其作用机制分析——以云南省为例[J]. 世界地理研究, 2021, 30(3): 645-656. |
[11] | 叶滨鸿, 程杨, 王利, 李东晔, 杨林生. 北极地区地缘经济关系演变研究[J]. 世界地理研究, 2021, 30(2): 234-244. |
[12] | 马海涛, 孙湛, 张芳芳. 中亚城镇化研究的文献分析及热点变化[J]. 世界地理研究, 2021, 30(1): 80-89. |
[13] | 李倩, 曲凌雁. 城市旅游流网络结构特征及其影响因素[J]. 世界地理研究, 2021, 30(1): 114-124. |
[14] | 朱尧, 邹永广, 李强红, 李志强. 网络关系视角下中国公民出境旅游安全感知事件时空分布特征[J]. 世界地理研究, 2020, 29(6): 1304-1312. |
[15] | 田卫民, 孟帅康, 王桀. 云南、广西面向东盟的旅游经济联系及 社会网络演化[J]. 世界地理研究, 2020, 29(6): 1226-1236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||