主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2024, Vol. 33 ›› Issue (12): 148-162.DOI: 10.3969/j.issn.1004-9479.2024.12.20230079

• 文化与社会 • 上一篇    下一篇

虚拟旅游网络关注度的时空特征及其影响因素

殷紫燕1,2(), 黄安民1,2,3()   

  1. 1.华侨大学,旅游学院,泉州 362021
    2.华侨大学,旅游规划与景区发展研究中心,泉州 362021
    3.华侨大学,文旅与世界遗产研究中心,泉州 362021
  • 收稿日期:2023-02-21 修回日期:2023-08-08 出版日期:2024-12-15 发布日期:2024-12-23
  • 通讯作者: 黄安民
  • 作者简介:殷紫燕(1995—),女,博士研究生,研究方向为数字文旅和文旅融合,E-mail:2275507851@qq.com
  • 基金资助:
    福建省社会科学基金项目(FJ2022B074)

Spatial-temporal characteristics and influencing factors of network attention on virtual tourism

YIN Ziyan1,2(), Anmin HUANG1,2,3()   

  1. 1.College of Tourism, Huaqiao University, Quanzhou 362021, China
    2.The Center of Tourism planning and Tourist Attractions Development, Huaqiao University, Quanzhou 362021, China
    3.Cultural Tourism and World Heritage Research Center, Huaqiao University, Quanzhou 362021, China
  • Received:2023-02-21 Revised:2023-08-08 Online:2024-12-15 Published:2024-12-23
  • Contact: Anmin HUANG

摘要:

考察虚拟旅游网络关注度的时空特征与影响因素不仅可以了解各地虚拟旅游的发展现状,也有利于了解民众对虚拟旅游的兴趣并作为预测各地旅游需求的重要指标。但旅游领域网络关注度研究主要集中在实地旅游,而虚拟旅游对网络的依赖性更高,却极少有研究将百度指数应用到虚拟旅游中。因此,本研究以我国31个省(市、区)的虚拟旅游百度指数为基础,采用季节性集中指数、地理集中指数、变差系数、首位度及地理探测器等方法对我国虚拟旅游的网络关注度的时空特征及影响因素进行分析。结果表明:(1)总体上虚拟旅游网络关注度呈现出平稳发展态势,2016年达到最高峰。虚拟旅游网络关注度季节性变化幅度较大,3、4、5、6和10月为网络搜索的旺季,大众倾向于在春季和秋季关注虚拟旅游。(2)整体上,虚拟旅游网络关注度空间演化格局较为稳定,呈现 “胡焕庸线”为界的分布特征。区域上,虚拟旅游网络关注度呈现东-中-西依次减少的态势。区域内部,虚拟旅游网络关注度空间分布差异西部最大,东部和中部较为均衡,且东部差异有缩小趋势,中部和西部差异有进一步扩大趋势。(3)虚拟旅游网络关注度受到经济条件、人口因素、教育发展程度、旅游发展水平和数字化程度的影响。此外,政策支持、典型虚拟旅游项目及热点事件等也会对虚拟旅游网络关注度产生影响。本研究在理论上拓展和丰富了虚拟旅游及网络关注度的研究框架,从实践上为我国虚拟旅游的政策制定、虚拟旅游项目开发及未来旅游产业提质增效和高质量发展提供参考。

关键词: 虚拟旅游网络关注度, 时空特征, 影响因素, 百度指数, 地理探测器

Abstract:

Virtual tourism network attention is an important reflection of the influence of virtual tourism. Based on the Baidu index of virtual tourism in 31 provinces (cities and districts) in China, this study uses the seasonal concentration index, geographic concentration index, variation coefficient, primacy degree and geographic detector to analyze the spatial-temporal characteristics and influencing factors of network attention of virtual tourism. The results show that :(1) on the whole, the attention of virtual tourism networks shows a steady development trend, reaching a peak in 2016 and the second small peak in 2020. The seasonal variation of virtual tourism network attention is large. March, April, May, June and October are the peak seasons of virtual tourism network search. The public tends to pay more attention to virtual tourism in spring and autumn, and the seasonal and inter-annual differences are further expanding. (2) From the perspective of overall spatial evolution, the spatial evolution pattern of attention in virtual tourism networks is relatively stable, presenting an obvious distribution characteristic of "Hu Line". From the regional point of view, the attention of virtual tourism networks shows a trend of decreasing from east to middle to west. The spatial distribution difference of attention in virtual tourism networks is the largest in the western region, and the eastern and central regions are relatively balanced. The difference has a narrowing trend in the eastern region, and a further widening trend in the central and western regions. (3) The level of virtual tourism network attention is influenced by the level of economic development, population size, education development, tourism development and network development. Among them, the level of tourism development has a certain explanatory power to the difference of attention, but it is not a strong factor. In addition, policy support, typical virtual tourism projects and hot events will also affect the attention of the virtual tourism network.

Key words: virtual tourism network attention, spatial and temporal characteristics, influencing factors, Baidu Index, geographic detector