主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2024, Vol. 33 ›› Issue (12): 94-106.DOI: 10.3969/j.issn.1004-9479.2024.12.20230223

• 城市与产业 • 上一篇    下一篇

多源大数据下中国特大城市人口夜间热力特征与影响因素研究

吴淼淼1(), 师满江1,2(), 曹琦1, 宁志中2   

  1. 1.西南科技大学土木工程与建筑学院,绵阳 621010
    2.中国科学院地理科学与资源研究所,北京 100101
  • 收稿日期:2023-04-21 修回日期:2023-09-11 出版日期:2024-12-15 发布日期:2024-12-23
  • 通讯作者: 师满江
  • 作者简介:吴淼淼(1998—),女,博士研究生,研究方向为时空大数据应用与研究,E-mail:1170317854@qq.com

Research on the thermal characteristics and influencing factors of population night-time in Chinese megacities under multi-source big data

Miaomiao WU1(), Manjiang SHI1,2(), Qi CAO1, Zhizhong NING2   

  1. 1.School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
    2.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2023-04-21 Revised:2023-09-11 Online:2024-12-15 Published:2024-12-23
  • Contact: Manjiang SHI

摘要:

掌握城市人口夜间的时空热力动态变化和影响因素,对繁荣城市夜间经济和推动城市管理等都具有重要的意义。近年来城市多源大数据的不断发掘,为实时追踪城市人口夜间热力变化提供了可能。基于百度人口热力图、珞珈(LJ1-01)夜光遥感和城市兴趣点(POI)等多源大数据,以北京、上海、广州、深圳、成都和武汉6座特大城市为案例区,构建人口夜间热力模型,测算了上述6座城市在20∶00—20∶30期间的人口热力特征,并进一步采用地理探测器和地理加权回归方法分析了影响案例区人口夜间热力特征的因素。结果表明:(1)特大城市人口夜间热力分布与城市主要道路空间分布基本一致,主要呈现出“核心-边缘”梯度递减、“一核多中心”连片分布和“组团式”分布三种类型;(2)与常住人口相比,各城市人口夜间热力规模较小,平均仅占常住人口的0.416‰,且接近47%的人口夜间聚集在中等热力区;(3)城市土地利用混合度、商业活力和道路通达度是影响城市人口夜间热力的首要因素,但在不同的城市和地区影响程度有所差异。研究结果对特大城市制定夜间消费政策和优化城市人口夜间管理具有较强的现实意义,也为今后城市夜间建设提供有效参考。

关键词: 人口夜间热力, 百度人口热力图, 兴趣点(POI), 地理探测器, 地理加权回归模型

Abstract:

It is of great significance to master the dynamic changes and influencing factors of the temporal and spatial thermal dynamics of the urban population at night-time for the prosperity of urban night-time economy and the promotion of urban management. However, the current authoritative census data is still faced with the bottleneck that it is difficult to track the night-time thermal changes of the urban population in real-time, but the continuous exploration of urban multi-source big data in recent years provides a possibility to break through the above bottleneck. Based on multi-source big data such as the Baidu population heat map, Luojia (LJ1-01) luminous remote sensing and urban Point of Interest (POI), and taking six megacities of Beijing, Shanghai, Guangzhou, Shenzhen, Chengdu and Wuhan as case areas, the population heat characteristics of these six cities during 20:00-20:30 were calculated by constructing a population heat model at night-time. Furthermore, the factors affecting the night-time heat characteristics of the population in the case area are analyzed using a geographical detector and geographical weighted regression method. The results show that: (1) the night-time heat distribution of the population in megacities is basically the same as the spatial distribution of main roads, which mainly presents three types: "core-edge" gradient decline, "one-core multi-center" contiguous distribution and "group-type" scattered distribution; (2) Compared with the resident population, the night-time heat scale of urban population is smaller, accounting for only about 0.416‰ of the resident population on average, and nearly 47% of the population gathers in the medium heat area at night-time. (3) The mixing degree of urban land use, commercial activity and road accessibility are the main factors affecting the night-time heat of the urban population, but the influence degree varies in different cities and regions. The results of this study have practical significance for the formulation of night-time consumption policies and also provide reference for future urban night-time construction.

Key words: population night-time heat, Baidu population heat map, Points of Interest(POI), Geodetector, Geographically weighted regression Model