主管单位:中国科学技术协会
主办单位:中国地理学会
承办单位:华东师范大学

世界地理研究 ›› 2024, Vol. 33 ›› Issue (5): 177-188.DOI: 10.3969/j.issn.1004-9479.2024.05.20220457

• 文化与社会 • 上一篇    

基于百度指数的乡村旅游需求时空特征及其影响因素研究

刘海朦1,2(), 田小波1,2, 曹婷婷3()   

  1. 1.华中师范大学城市与环境科学学院,武汉 430079
    2.中国旅游研究院武汉分院,武汉 430079
    3.郑州科技学院工商管理学院,郑州 450064
  • 收稿日期:2022-06-25 修回日期:2022-12-22 出版日期:2024-05-15 发布日期:2024-05-30
  • 通讯作者: 曹婷婷
  • 作者简介:刘海朦(1993—),女,博士研究生,研究方向为乡村旅游、旅游地理学,E-mail: lhmengdoris@163.com
  • 基金资助:
    国家社会科学基金项目(20CMZ033);华中师范大学中央高校基本科研业务费项目(CCNU20BG003);中国旅游研究院(研究生)优奖计划基金资助课题

Research on spatio-temporal characteristics and its influencing factors of rural tourism demand based on Baidu Index

Haimeng LIU1,2(), Xiaobo TIAN1,2, Tingting CAO3()   

  1. 1.The College of Urban and Environment Science, Central China Normal University, Wuhan 430079, China
    2.Wuhan Branch of China Tourism Academy, Wuhan 430079, China
    3.School of Business Administration, Zhengzhou Institute of Technology, Zhengzhou 450064, China
  • Received:2022-06-25 Revised:2022-12-22 Online:2024-05-15 Published:2024-05-30
  • Contact: Tingting CAO

摘要:

互联网搜索行为是用户需求和行为惯性在虚拟空间的直观表达,为长时间序列、大空间尺度旅游需求分析提供了新的视角。论文以2011—2020年我国31个省级行政区乡村旅游9个关键词的百度指数为数据基础,利用空间自相关、地理探测器等方法分析了我国乡村旅游需求的时空演变特征及其影响因素。研究发现:(1)乡村旅游需求十年间总体呈“倒U”形变化形态,并表现出快速发展期、波动发展期的非线性阶段特征;年内呈现出“两峰两谷”变化特征,淡、旺季和周末效应比较明显。(2)乡村旅游需求整体上呈集聚分布状态,集聚效应随年际变化略有波动;局部空间上呈现东高西低的梯度递减格局,且此特征在十年间基本保持稳定。(3) 5个因子对乡村旅游需求时空特征有持续显著的影响,其解释力表现为地区生产总值>星级饭店数量>人口总量>公路密度>国家级乡村旅游点数量,其他因子解释力相对较低或年际变动较大。论文借助网络大数据从宏观层面揭示了乡村旅游需求的时空演变规律及其影响因素,为优化产业布局、推进乡村旅游供需有效对接等提供了理论指导和实践借鉴。

关键词: 乡村旅游需求, 时空特征, 百度指数, 地理探测器, 影响因素

Abstract:

Internet search behavior is an intuitive expression of user needs and behavioral inertia in a virtual space, providing a new perspective for long-term sequenced and broad-scale spatial tourism demand analysis. Based on the Baidu search index of 9 keywords of rural tourism in China from 2011 to 2020, this paper tried to explore the spatial-temporal characteristics and influencing factors of rural tourism demand by means of spatial autocorrelation and geographic detector. The research found that: ① As for temporal characteristics of rural tourism demand, it shows an "inverted U-shaped" change pattern during 2011-2020, and exhibits non-linear phases characterized by periods of rapid development and fluctuating development. It shows "two peaks and two valleys" during the year, and the characteristics of off-season/peak season, and weekend effects are obvious. ② In terms of spatial distribution, it is basically in clustered distribution, and the clustered effect fluctuates slightly each year. The local spatial pattern shows the characteristics of declining gradients in which the east is high and the west is low, and it remains basically stable during 2011-2020. ③ There are five persistently significant influencing factors, and their explanatory power is as follows: GDP>number of star-rated hotels>total population>highway density>country-level rural tourist spots. Other factors have relatively low explanatory power or have great changes in ten years.This research reveals the spatio-temporal pattern of rural tourism demand and its influencing factors from the macro level with the help of network big data, which provides theoretical guidance and practical reference for optimizing industrial layout and promoting effective matching of supply and demand.

Key words: rural tourism demand, spatio-temporal characteristics, Baidu Index, geographic detector, influencing factor