World Regional Studies ›› 2021, Vol. 30 ›› Issue (1): 101-113.DOI: 10.3969/j.issn.1004-9479.2021.01.2019314
Previous Articles Next Articles
Received:
2019-07-08
Revised:
2019-09-07
Online:
2021-01-09
Published:
2021-04-09
Contact:
Liming XIAO
通讯作者:
肖黎明
作者简介:
李雨婕(1994-),女,硕士研究生,研究方向:区域绿色创新与城市治理,E-mail: 793703285@qq.com。
基金资助:
Yujie LI, Liming XIAO. Analysis on the spatial structure characteristics and influencing factors of China's Green Financial Network: From the perspective of enterprise-city network retranslation model[J]. World Regional Studies, 2021, 30(1): 101-113.
李雨婕, 肖黎明. 中国绿色金融网络空间结构特征及影响因素分析[J]. 世界地理研究, 2021, 30(1): 101-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://sjdlyj.ecnu.edu.cn/EN/10.3969/j.issn.1004-9479.2021.01.2019314
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 0.646 | 0.368 | 0.380 | 0.269 | 0.079 | 0.105 | 0.138 | 0.094 |
2 | 0.256 | 0.643 | 0.111 | 0.016 | 0.012 | 0.000 | 0.055 | 0.000 |
3 | 0.043 | 0.011 | 0.031 | 0.004 | 0.013 | 0.012 | 0.011 | 0.056 |
4 | 0.053 | 0.016 | 0.000 | 0.222 | 0.006 | 0.000 | 0.000 | 0.000 |
5 | 0.004 | 0.001 | 0.003 | 0.003 | 0.002 | 0.000 | 0.000 | 0.000 |
6 | 0.030 | 0.000 | 0.014 | 0.000 | 0.003 | 0.129 | 0.000 | 0.000 |
7 | 0.000 | 0.011 | 0.003 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 |
8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Tab.1 Density matrix of agglomerated subgroups
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 0.646 | 0.368 | 0.380 | 0.269 | 0.079 | 0.105 | 0.138 | 0.094 |
2 | 0.256 | 0.643 | 0.111 | 0.016 | 0.012 | 0.000 | 0.055 | 0.000 |
3 | 0.043 | 0.011 | 0.031 | 0.004 | 0.013 | 0.012 | 0.011 | 0.056 |
4 | 0.053 | 0.016 | 0.000 | 0.222 | 0.006 | 0.000 | 0.000 | 0.000 |
5 | 0.004 | 0.001 | 0.003 | 0.003 | 0.002 | 0.000 | 0.000 | 0.000 |
6 | 0.030 | 0.000 | 0.014 | 0.000 | 0.003 | 0.129 | 0.000 | 0.000 |
7 | 0.000 | 0.011 | 0.003 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 |
8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
影响因素 | 相关系数 | 显著性水平 | 相关系数均值 | 标准差 | 最小值 | 最大值 | P1≥0 | P2≤0 |
---|---|---|---|---|---|---|---|---|
Admi | 0.2930 | 0.0001 | -0.0001 | 0.0107 | -0.0126 | 0.0596 | 0.0001 | 1.000 |
Head | 0.2232 | 0.0001 | -0.0001 | 0.0150 | -0.0261 | 0.0641 | 0.0001 | 1.000 |
Dist | 0.1292 | 0.0001 | 0.0000 | 0.0032 | -0.0110 | 0.0192 | 0.0001 | 1.000 |
AGDP | 0.1432 | 0.0001 | 0.0003 | 0.0182 | -0.0393 | 0.0668 | 0.0001 | 1.000 |
Struc | 0.1214 | 0.0001 | 0.0001 | 0.0190 | -0.0407 | 0.0616 | 0.0001 | 1.000 |
Invest | 0.1578 | 0.0001 | 0.0003 | 0.0170 | -0.0329 | 0.0675 | 0.0001 | 1.000 |
Open | 0.1545 | 0.0001 | 0.0001 | 0.0127 | -0.0179 | 0.0573 | 0.0001 | 1.000 |
Tab.2 Results of QAP correlation analysis
影响因素 | 相关系数 | 显著性水平 | 相关系数均值 | 标准差 | 最小值 | 最大值 | P1≥0 | P2≤0 |
---|---|---|---|---|---|---|---|---|
Admi | 0.2930 | 0.0001 | -0.0001 | 0.0107 | -0.0126 | 0.0596 | 0.0001 | 1.000 |
Head | 0.2232 | 0.0001 | -0.0001 | 0.0150 | -0.0261 | 0.0641 | 0.0001 | 1.000 |
Dist | 0.1292 | 0.0001 | 0.0000 | 0.0032 | -0.0110 | 0.0192 | 0.0001 | 1.000 |
AGDP | 0.1432 | 0.0001 | 0.0003 | 0.0182 | -0.0393 | 0.0668 | 0.0001 | 1.000 |
Struc | 0.1214 | 0.0001 | 0.0001 | 0.0190 | -0.0407 | 0.0616 | 0.0001 | 1.000 |
Invest | 0.1578 | 0.0001 | 0.0003 | 0.0170 | -0.0329 | 0.0675 | 0.0001 | 1.000 |
Open | 0.1545 | 0.0001 | 0.0001 | 0.0127 | -0.0179 | 0.0573 | 0.0001 | 1.000 |
影响因素 | 非标准化系数 | 标准化系数 | 显著性概率值 | 概率1 | 概率2 |
---|---|---|---|---|---|
截距项 | 0.01331 | 0.00000 | - | - | - |
Admi | 0.25179 | 0.23605 | 0.00010 | 0.00010 | 1.00000 |
Head | 0.04321 | 0.08992 | 0.00010 | 0.00010 | 1.00000 |
Dist | 0.11555 | 0.12683 | 0.00010 | 0.00010 | 1.00000 |
AGDP | 0.00487 | 0.01531 | 0.21148 | 0.21148 | 0.78862 |
Struc | 0.00347 | 0.01204 | 0.31817 | 0.31817 | 0.68193 |
Invest | 0.02381 | 0.06424 | 0.00010 | 0.00010 | 1.00000 |
Open | 0.06894 | 0.09315 | 0.00010 | 0.00010 | 1.00000 |
Tab.3 Results of QAP regression analysis
影响因素 | 非标准化系数 | 标准化系数 | 显著性概率值 | 概率1 | 概率2 |
---|---|---|---|---|---|
截距项 | 0.01331 | 0.00000 | - | - | - |
Admi | 0.25179 | 0.23605 | 0.00010 | 0.00010 | 1.00000 |
Head | 0.04321 | 0.08992 | 0.00010 | 0.00010 | 1.00000 |
Dist | 0.11555 | 0.12683 | 0.00010 | 0.00010 | 1.00000 |
AGDP | 0.00487 | 0.01531 | 0.21148 | 0.21148 | 0.78862 |
Struc | 0.00347 | 0.01204 | 0.31817 | 0.31817 | 0.68193 |
Invest | 0.02381 | 0.06424 | 0.00010 | 0.00010 | 1.00000 |
Open | 0.06894 | 0.09315 | 0.00010 | 0.00010 | 1.00000 |
1 | 龚斯闻,赵国栋,马晓崟. 绿色金融的发展逻辑与演进路径——基于要素解构的视角. 经济问题探索,2019(10):184-190. |
Gong S, Zhao G, Ma X. The development logic and evolution path of Green Finance: Based on the perspective of factor deconstruction. Exploration of economic problems, 2019 (10): 184-190. | |
2 | Castells M. Centrality in the space of flows. Built Environment, 2007, 33(4):482-485. |
3 | Taylor P J. World city network: A global urban analysis. NewYork: Routledge, 2004. |
4 | 季菲菲,陈雯,魏也华,等. 长三角一体化下的金融流动格局变动及驱动机理——基于上市企业金融交易数据的分析. 地理学报,2014,69(6):105-119. |
Ji F, Chen W, Wei Y, et al. The change and driving mechanism of financial flow pattern under the integration of Yangtze River Delta: Based on the analysis of financial transaction data of listed enterprises. Journal of geography, 2014, 69 (6): 105-119. | |
5 | 庄德林,杨羊,晋盛武,等. 基于战略性新兴产业的长江三角洲城市网络结构演变研究. 地理科学,2017,37(4):546-553. |
Zhuang D, Yang Y, Jin S, et al. Study on the evolution of urban network structure in the Yangtze River Delta Based on strategic emerging industries. Geosciences, 2017, 37 (4): 546-553. | |
6 | Clark G L. Money flows like mercury: The geography of global finance. Geografiscka Annaler, 2005, 87B(2): 99-112. |
7 | 尹俊,甄峰,王春慧. 基于金融企业布局的中国城市网络格局研究. 经济地理,2011,31(5):754-759. |
Yin J, Zhen F, Wang C. Study on the urban network pattern of China based on the layout of financial enterprises. Economic geography, 2011, 31 (5): 754-759. | |
8 | 戚湧,王明阳. 绿色金融政策驱动下的企业技术创新博弈研究. 工业技术经济,2019,38(1):3-10. |
Qi Y, Wang M. Game Research on enterprise technology innovation driven by green financial policy. Industrial technology economy, 2019, 38 (1): 3-10. | |
9 | 张莉莉,肖黎明,高军峰. 中国绿色金融发展水平与效率的测度及比较——基于1040家公众公司的微观数据. 中国科技论坛,2018(9):100-112, 120. |
Zhang L, Xiao L, Gao J. Measurement and comparison of development level and efficiency of green finance in China: based on micro data of 1040 public companies. China Science and Technology Forum, 2018 (9): 100-112, 120. | |
10 | 于冬菊. 金融机构发展绿色金融的影响因素研究——基于先行国家的实证检验. 财经问题研究,2017(12): 53-60. |
Yu D. Research on the influencing factors of financial institutions' development of green finance: Empirical test based on leading countries. Research on financial issues, 2017 (12): 53-60. | |
11 | Purdon Mark. Opening the black box of carbon finance "additionality": The political economy of carbon finance effectiveness across Tanzania, Uganda, and Moldova. World Development, 2015, 74(5):462-478. |
12 | 刘锡良,文书洋. 中国的金融机构应当承担环境责任吗?——基本事实、理论模型与实证检验. 经济研究,2019(3):38-54. |
Liu X, Wen S. Should Chinese financial institutions bear environmental responsibility: Basic facts, theoretical models and empirical tests. Economic research, 2019 (3): 38-54. | |
13 | 杨永春, 冷炳荣, 谭一洺, 等. 世界城市网络研究理论与方法及其对城市体系研究的启示. 地理研究, 2011, 30(6): 1009-1020. |
Yang Y, Leng B, Tan Y, et al. Review on world city studies and their implications in urban systems. Geographical Research, 2011, 30(6): 1009-1020. | |
14 | 赵新正,李秋平,芮旸,等. 基于财富500强中国企业网络的城市网络空间联系特征. 地理学报, 2019, 74(4): 694-709. |
Zhao X, Li Q, Rui Y, et al. The characteristics of urban network of China: A study based on the Chinese companies in the Fortune Global 500 list. Journal of Geography. 2019, 74(4): 694-709. | |
15 | Neal Z. Structural determinism in the interlocking world city network. Geographical Analysis, 2012, 44(2):162-170. |
16 | Taylor P J. Specification of the World City Network. Geographical Analysis, 2001, 33(2):181-194. |
17 | Alderson A S, Beckfiled J. Power and position in the world city system. American Journal of Sociology, 2004, 109(4):811-851. |
18 | Friedman. The world city hypothesis. Development & Change, 1986, 17(17):69-83. |
19 | Hennemann S, Derudder B. An alternative approach to the calculation and analysis of connectivity in the world city network[J]. Environment and Planning B, 2014, 41(3):392-412. |
20 | 赵金丽,盛彦文,张璐璐,等. 基于细分行业的中国城市群金融网络演化. 地理学报, 2019, 74(4): 723-736. |
Zhao J, Sheng Y, Zhang L, et al. Evolution of urban agglomeration financial network in China based on subdivision industry. Journal of geography, 2019, 74 (4): 723-736. | |
21 | 姚晓明,杨白冰,朱晟君. 中国商业银行网点空间演化路径——基于上市与非上市银行的比较分析. 经济地理, 2019,39(5): 157-164. |
Yao X, Yang B, Zhu S. Spatial evolution path of China commercial bank branches based on comparison of listed and unlisted banks. Economic geography, 2019, 39 (5): 157-164. | |
22 | 刘军. 社会网络分析导论. 北京:社会科学文献出版社,2004:100-111. |
Liu J. Introduction to social network analysis. Beijing: Social Sciences Literature Press, 2004:100-111. | |
23 | 袁红林,辛娜. 中国高端制造业的全球贸易网络格局及其影响因素分析. 经济地理,2019,39(6):108-117. |
Yuan H, Xin N. Analysis of the global trade network pattern of China's high-end manufacturing industry and its influencing factors. Economic geography, 2019, 39 (6): 108-117. | |
24 | 高鹏.长江中游城市群网络结构演变研究.上海:华东师范大学,2016. |
Gao P.Study on the evolution of network structure of urban agglomerations in the middle reaches of the Yangtze River.Shanghai: East China Normal University, 2016. | |
25 | 叶士琳,曹有挥,王佳韡,等. 基于企业视角的中国集装箱运输组织网络. 地理学报,2017,72(8):1520-1530. |
Ye S, Cao Y, Wang J, et al. China's container transportation organization network from the perspective of enterprises. Journal of geography, 2017, 72 (8): 1520-1530. | |
26 | 盛科荣,杨雨,孙威. 中国城市网络中心性的影响因素及形成机理——基于上市公司500强企业网络视角. 地理科学进展,2019,38(2):248-258. |
Sheng K, Yang Y, Sun W. Influencing factors and formation mechanism of urban network centrality in China: Based on the perspective of the network of top 500 listed companies. Progress in geographic science, 2019, 38 (2): 248-258. | |
27 | 盛科荣,杨雨,张红霞. 中国城市网络的凝聚子群及影响因素研究. 地理研究, 2019,38(11): 2639 -2652. |
Sheng K, Yang Y, Zhang H. Cohesive subgroups and underlying factors in the urban network in China. Geographic research, 2019, 38 (11): 2639-2652. | |
28 | 叶雅玲,林文盛,李振发,等. 中国城市间投融资网络结构及其影响因素. 世界地理研究, 2020,29(2): 307-316. |
Ye Y, Lin W, Li Z, et al. Spatial structure and influencing factors of urban investment and financing network in China. World geographic research, 2020, 29 (2): 307-316 | |
29 | 曾冰. 中国省际金融发展的空间网络结构及其驱动机制研究. 金融发展研究, 2019(10): 1-8. |
Zeng B. Research on Spatial Network Structure and Driving Mechanism of Interprovincial Finance Development in China. Financial development research, 2019 (10): 1-8. | |
30 | Porteous D J. The Geography of Finance: Spatial Dimensions of Intermediary Behaviour. Aldershot: Avebury, 1995. |
31 | 尹来盛,冯邦彦. 金融集聚研究进展与展望. 人文地理, 2012, 27(1): 16-21. |
Yin L, Feng B. Review and prospect of financial agglomeration research. Human geography, 2012, 27 (1): 16-21. | |
32 | 赵晓斌,王坦. 跨国公司总部与中国金融中心发展——金融地理学的视角与应用. 城市规划, 2006(S1): 23-28. |
Zhao X, Wang T. MNC headquarter agglomeration and financial center development in China: A geography of perspective and application. Urban planning, 2006 (S1): 23-28 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||