World Regional Studies ›› 2024, Vol. 33 ›› Issue (4): 117-129.DOI: 10.3969/j.issn.1004-9479.2024.04.20220374
Shengzhong ZHANG1(), Di MENG1(), Tingyi CHAI2
Received:
2022-05-24
Revised:
2022-12-27
Online:
2024-04-15
Published:
2024-04-24
Contact:
Di MENG
通讯作者:
孟迪
作者简介:
张圣忠(1978—),男,教授,博士,研究方向为现代物流与供应链管理、交通运输经济与管理,E-mail: szzhang@chd.edu.cn。
基金资助:
Shengzhong ZHANG, Di MENG, Tingyi CHAI. Spatial evolution and influencing factors of logistics enterprises in Guanzhong Plain Urban Agglomeration[J]. World Regional Studies, 2024, 33(4): 117-129.
张圣忠, 孟迪, 柴廷熠. 关中平原城市群物流企业空间格局演化及影响因素研究[J]. 世界地理研究, 2024, 33(4): 117-129.
企业状态 | 2005年 | 2010年 | 2015年 | 2019年 |
---|---|---|---|---|
在业/存续 | 1 167 | 2 270 | 6 075 | 14 563 |
注销 | 209 | 244 | 845 | 1 141 |
总计 | 1 376 | 2 514 | 6 920 | 15 704 |
Tab.1 Statistics on the number of logistics enterprises in urban agglomerations by time point
企业状态 | 2005年 | 2010年 | 2015年 | 2019年 |
---|---|---|---|---|
在业/存续 | 1 167 | 2 270 | 6 075 | 14 563 |
注销 | 209 | 244 | 845 | 1 141 |
总计 | 1 376 | 2 514 | 6 920 | 15 704 |
时间 | 平均观测距离/km | 预期平均距离/km | 最邻近比率 | z得分 | p值 | 分布类型 |
---|---|---|---|---|---|---|
2005 | 2 172.64 | 7 454.43 | 0.291 | -50.28 | 0 | 聚集 |
2010 | 1 388.15 | 5 511.51 | 0.252 | -71.76 | 0 | 聚集 |
2015 | 662.81 | 3 377.26 | 0.196 | -127.91 | 0 | 显著聚集 |
2019 | 391.82 | 2 280.96 | 0.172 | -198.57 | 0 | 显著聚集 |
Tab.2 ANN analysis results of logistics enterprises in urban agglomeration
时间 | 平均观测距离/km | 预期平均距离/km | 最邻近比率 | z得分 | p值 | 分布类型 |
---|---|---|---|---|---|---|
2005 | 2 172.64 | 7 454.43 | 0.291 | -50.28 | 0 | 聚集 |
2010 | 1 388.15 | 5 511.51 | 0.252 | -71.76 | 0 | 聚集 |
2015 | 662.81 | 3 377.26 | 0.196 | -127.91 | 0 | 显著聚集 |
2019 | 391.82 | 2 280.96 | 0.172 | -198.57 | 0 | 显著聚集 |
Fig.6 Kernel density analysis of spatial distribution of logistics enterprises in urban agglomerations (storage type, transport type,comprehensive and postal express)
因素 | 指标 | 指标代码 | 具体说明 |
---|---|---|---|
生产 | 人均生产总值 | PCGDP | 衡量各地市经济发展状况和人民生活水平 |
规模以上工业总产值 | GIOV | 反映本年度各地市工业生产总规模和总水平 | |
消费 | 社会消费品零售总额 | FSBC | 地区商品销售收入,间接体现物流需求状况 |
居民人均可支配收入 | PCADI | 衡量各地市人民消费潜在水平 | |
交通 | 等级公路里程 | LH | 反映当前物流基础设施建设情况 |
公路货运量 | FV | 衡量各地市物流公路运输规模的综合性指标 | |
社会 | 常住人口 | PP | 衡量各地市物流需求水平 |
政府财政支出 | FS | 政府支持产业发展给予的间接财政支持 | |
产业 | 邮政业务总量 | TPT | 衡量各地市邮政快递业务整体水平 |
上一年度物流企业数量 | NUM | 上一年各地市物流企业聚集数量,体现产业聚集情况 |
Tab.3 Indicator selection and description
因素 | 指标 | 指标代码 | 具体说明 |
---|---|---|---|
生产 | 人均生产总值 | PCGDP | 衡量各地市经济发展状况和人民生活水平 |
规模以上工业总产值 | GIOV | 反映本年度各地市工业生产总规模和总水平 | |
消费 | 社会消费品零售总额 | FSBC | 地区商品销售收入,间接体现物流需求状况 |
居民人均可支配收入 | PCADI | 衡量各地市人民消费潜在水平 | |
交通 | 等级公路里程 | LH | 反映当前物流基础设施建设情况 |
公路货运量 | FV | 衡量各地市物流公路运输规模的综合性指标 | |
社会 | 常住人口 | PP | 衡量各地市物流需求水平 |
政府财政支出 | FS | 政府支持产业发展给予的间接财政支持 | |
产业 | 邮政业务总量 | TPT | 衡量各地市邮政快递业务整体水平 |
上一年度物流企业数量 | NUM | 上一年各地市物流企业聚集数量,体现产业聚集情况 |
企业类型 | 仓储型、运输型、邮政快递型 | 综合型 | 赋值 |
---|---|---|---|
小微型 | 300万以下 | 300万以下 | 1 |
中型 | 300~800万 | 300~600万 | 2 |
大型 | 800~4 000万 | 600~2 000万 | 3 |
特大型 | 4 000~20 000万 | 2 000~10 000万 | 5 |
超大型 | 20 000万以上 | 10 000万以上 | 10 |
Tab.4 Logistics enterprise assignment standard
企业类型 | 仓储型、运输型、邮政快递型 | 综合型 | 赋值 |
---|---|---|---|
小微型 | 300万以下 | 300万以下 | 1 |
中型 | 300~800万 | 300~600万 | 2 |
大型 | 800~4 000万 | 600~2 000万 | 3 |
特大型 | 4 000~20 000万 | 2 000~10 000万 | 5 |
超大型 | 20 000万以上 | 10 000万以上 | 10 |
解释变量 | Pearso相关系数 | 解释变量 | Pearso相关系数 |
---|---|---|---|
PCGDP | FV | ||
GIOV | PP | ||
FSBC | FS | ||
PCADI | TPT | ||
LH | NUM |
Tab.5 Correlation analysis results of influencing factors
解释变量 | Pearso相关系数 | 解释变量 | Pearso相关系数 |
---|---|---|---|
PCGDP | FV | ||
GIOV | PP | ||
FSBC | FS | ||
PCADI | TPT | ||
LH | NUM |
变量 | 模型一 | 模型二 | 模型三 | 模型四 | 模型五 | 模型六 | 模型七 |
---|---|---|---|---|---|---|---|
GIOV | |||||||
FSBC | |||||||
PP | |||||||
FS | |||||||
TPT | |||||||
NUM | |||||||
PCGDP | - | - | |||||
PCADI | - | - | |||||
LH | - | - | - | ||||
FV | - | - | - | - | |||
F检验 | |||||||
Hausman检验 | |||||||
Tab.6 Panel data regression model analysis results
变量 | 模型一 | 模型二 | 模型三 | 模型四 | 模型五 | 模型六 | 模型七 |
---|---|---|---|---|---|---|---|
GIOV | |||||||
FSBC | |||||||
PP | |||||||
FS | |||||||
TPT | |||||||
NUM | |||||||
PCGDP | - | - | |||||
PCADI | - | - | |||||
LH | - | - | - | ||||
FV | - | - | - | - | |||
F检验 | |||||||
Hausman检验 | |||||||
1 | O'CONNOR K. Global city regions and the location of logistics activity. Journal of Transport Geography,2009,18(3): 354-362. |
2 | BOWEN J T. Moving places: The geography of warehousing in the US. Journal of Transport Geography,2008,16(6): 379-387. |
3 | 蒋天颖,史亚男.宁波市物流企业空间格局演化及影响因素. 经济地理,2015,35(10):130-138. |
JIANG T, SHI Y. Evolution and influencing factors of spatial pattern of logistics enterprises in Ningbo. Economic Geography, 2015,35(10):130-138. | |
4 | 千庆兰,陈颖彪,李雁,等. 广州市物流企业空间布局特征及其影响因素. 地理研究,2011,30(7):1254-1261. |
QIAN Q, CHEN Y, LI Y, et al. Spatial distribution of logistics enterprises in Guangzhou and its influencing factors. Geographical Research,2011,30(7):1254-1261. | |
5 | 曹卫东. 城市物流企业区位分布的空间格局及其演化——以苏州市为例. 地理研究,2011,30(11):1997-2007. |
CAO W. Spatial pattern and location evolution of urban logistics enterprises: Taking Suzhou as an example. Economic Geography,2011,30(11):1997-2007. | |
6 | 谢永琴,魏晓晨. 北京物流企业空间布局演化及影响因素分析. 陕西师范大学学报(自然科学版),2019,47(2):106-115. |
XIE Y, WEI X. The spatial distribution evolution and influence factor of logistics enterprises in Beijing. Journal of Shaanxi Normal University (Natural Science Edition),2019,47(2):106-115. | |
7 | 张大鹏,曹卫东,姚兆钊,等. 上海大都市区物流企业区位分布特征及其演化. 长江流域资源与环境,2018,27(7):1478-1489. |
ZHANG D, CAO W, YAO Z, et al. Study on the distribution characteristics and evolution of logistics enterprises in Shanghai metropolitan area. Resources and Environment in the Yangtze Basin,2018,27(7):1478-1489. | |
8 | 梁双波,曹有挥,吴威. 上海大都市区港口物流企业的空间格局演化. 地理研究,2013,32(8):1448-1456. |
LIANG S, CAO Y, WU W. Spatial pattern evolution of port logistics enterprises in Shanghai metropolitan area. Geographical Research,2013,32(8):1448-1456. | |
9 | 张璐璐,赵金丽,宋金平. 京津冀城市群物流企业空间格局演化及影响因素. 经济地理,2019,39(3):125-133. |
ZHANG L, ZHAO J, SONG J. Spatial evolution and influencing factors of logistics enterprises in Beijing-Tianjin-Hebei Urban Agglomeration. Economic Geography,2019,39(3):125-133. | |
10 | 梁双波,曹有挥,吴威. 长江三角洲地区物流供应链时空演化及其影响因素——基于国际货代企业数据的分析. 地理研究,2017,36(11):2156-2170. |
LIANG S, CAO Y, WU W. Spatial-temporal evolution and influencing factors of logistics supply chain in the Yangtze River Delta: Based on international freight forwarding enterprises data. Geographical Research, 2017,36(11):2156-2170. | |
11 | 沈玉芳,王能洲,马仁锋,等. 长三角区域物流空间布局及演化特征研究. 经济地理,2011,31(4):618-623. |
SHEN Y, WANG N, MA R, et al. A research on the spatial distribution of regional logistics and evolution in the Yangtze River Delta. Economic Geography, 2011,31(4):618-623. | |
12 | 崔园园,宋炳良. 长三角区域物流空间演化与影响因素分析. 华中师范大学学报(自然科学版),2015,49(2):302-306. |
CUI Y, SONG B. Analysis on the spatial evolution and influencing factors of logistics in the Yangtze River Delta region. Journal of Central China Normal University (Natural Science Edition), 2015,49(2):302-306. | |
13 | HE M, SHEN J, WU X, et al. Logistics space: A literature review from the sustainability perspective. Sustainability,2018,10(8): 2815. |
14 | HESSE M, RODRIGUE J P. The transport geography of logistics and freight distribution. Journal of Transport Geography,2003,12(3):171-184. |
15 | OUM T H, PARK J H. Multinational firms' location preference for regional distribution centers: Focus on the Northeast Asian region. Transportation Research Part E: Logistics and Transportation Review, 2004, 40(2): 101-121. |
16 | JING N, CAI W. Analysis on the spatial distribution of logistics industry in the developed East Coast Area in China. The Annals of Regional Science,2010,45(2): 331-350. |
17 | 俞佳立,钱芝网. 长江经济带物流产业效率的时空演化及其影响因素. 经济地理,2018,38(8):108-115. |
YU J, QIAN Z. Logistics industry efficiency and its influencing factors in Yangtze River Economic Belt. Economic Geography,2018,38(8):108-115. | |
18 | 李国旗,金凤君,陈娱,等. 基于POI的北京物流业区位特征与分异机制. 地理学报,2017,72(6):1091-1103. |
LI G, JIN F, CHEN Y, et al. Location characteristics and differentiation mechanism of Beijing logistics industry based on POI. Acta Geographica Sinica, 2017,72(6):1091-1103. | |
19 | 邱莹,施先亮,马依彤,等. 北京市食品冷链物流时空分布特征及变迁. 地域研究与开发,2018,37(4):32-36. |
QIU Y, SHI X, MA Y, et al. Spatio-temporal distribution features and revolutions of food cold chain logistics in Beijing City. Areal Research and Development,2018,37(4):32-36. | |
20 | 刘畅,张晓燕.物流集群协同的自组织特征和演化机理.甘肃社会科学,2018(3):236-242. |
LIU C, ZHANG X.Self-organization characteristics and evolution mechanism of logistics cluster collaboration.Gansu Social Sciences,2018(3):236-242. | |
21 | 陈思宇,张昕彤,吴迪,等.北京市批发企业区位分布演化与驱动力分析.经济地理,2016,36(9):111-117. |
CHEN S, ZHANG X, WU D, et al. Evolutionary Characteristics and Drivers of Location of Wholesale Firms in Beijing. Economic Geography, 2016, 36 (9):111-117. | |
22 | 白仲林. 面板数据的计量经济分析. 天津:南开大学出版社,2008. |
BAI Z. Econometric Analysis of Panel Data. Tianjin: Nankai University Press,2008. |
[1] | Hongyan PENG, Zhiwei DING. The spatio-temporal characteristics and influencing factors of Taobao village's "growth-disappearance" in China [J]. World Regional Studies, 2024, 33(4): 103-116. |
[2] | Jiyao YAN, Yuan ZHAO, Xiaoyan XIONG, Xin XU. Spatiotemporal evolution and influencing factors of domestic service industry development in China [J]. World Regional Studies, 2024, 33(3): 161-174. |
[3] | Wen LI, Desheng LI, Hao HU, Senlin HU. The spatial pattern and influencing factors of the pension industry in Yangtze River Delta [J]. World Regional Studies, 2024, 33(2): 123-135. |
[4] | Maolin LIANG, Juhua HONG, Huasong LUO, Bangwen PENG, Chenran XIONG. Research on the spatio-temporal evolution of APEC trade network structure and its influencing factors [J]. World Regional Studies, 2024, 33(1): 18-32. |
[5] | Junzhi DONG, Yiwei MENG, Zhiwei DING. Spatial differentiation and influencing factors of innovation output at county scale in China [J]. World Regional Studies, 2023, 32(8): 88-102. |
[6] | Changqiang FENG, Lili WU, Guozhong ZHOU, Xiaofei QI, Peng DU. Spatio-temporal evolution of arms trade pattern in Southeast Asia [J]. World Regional Studies, 2023, 32(7): 13-23. |
[7] | Pingping HU, Youde WU, Cansong LI, Min WANG. Spatio-temporal evolution of the armed conflict in Northern Myanmar and its impact on China's southwestern border area [J]. World Regional Studies, 2023, 32(7): 75-87. |
[8] | Ruibo ZHOU, Yinan CHEN, Yuanhong QIN. Evolution and influencing factors of global high-tech products trade network [J]. World Regional Studies, 2023, 32(6): 1-13. |
[9] | Qixiang SUN, Baisui LI, Tongyu TIAN, Yehui XU, Hongpu ZHAO. Spatio-temporal pattern of urban vitality in Inner Mongolia and its influencing factors [J]. World Regional Studies, 2023, 32(3): 101-111. |
[10] | Zaijun LI, Meijuan HU. Spatial-temporal evolution and formation mechanism of ecological well-being performance in Jiangsu Province [J]. World Regional Studies, 2023, 32(3): 124-135. |
[11] | Song YIN, Rui LI, Hongmei YIN. Measurement and influencing factors of placeness perception of ethnic village residents under the background of tourism development: [J]. World Regional Studies, 2023, 32(3): 144-156. |
[12] | Jingya XU, Zhouying SONG. The evolution of China's mobile phone export trade pattern and its influencing factors [J]. World Regional Studies, 2023, 32(3): 17-27. |
[13] | Bo TANG, Deguan CHEN, Hao LUO, Weixing XIE, Lin LIN. Spatial evolution and influencing factors of high-tech industries in Foshan City under the high-quality development [J]. World Regional Studies, 2023, 32(2): 136-145. |
[14] | Xiao XIE, Bin YING, Fangjuan DU, Xiaoyu SONG, Hanyan WU. Regional differences and influencing factors of the health level of women and children in China [J]. World Regional Studies, 2023, 32(2): 82-92. |
[15] | Kai WANG, Xin GUO, Jun YE, Chang GAN. Spatio-temporal characteristics and influencing factors of high-quality development of tourism in China [J]. World Regional Studies, 2023, 32(12): 104-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||