World Regional Studies ›› 2024, Vol. 33 ›› Issue (3): 147-160.DOI: 10.3969/j.issn.1004-9479.2024.03.20230437
Previous Articles Next Articles
Peiqing LI(), Xinzheng ZHAO(), Yongqing JIANG, Xing YU, Dekang ZHANG
Received:
2023-06-30
Revised:
2023-11-14
Online:
2024-03-15
Published:
2024-03-22
Contact:
Xinzheng ZHAO
通讯作者:
赵新正
作者简介:
李培庆(1997—),男,硕士,研究方向为城市与区域发展,E-mail:1016817041@qq.com。
基金资助:
Peiqing LI, Xinzheng ZHAO, Yongqing JIANG, Xing YU, Dekang ZHANG. Multi-scale urban network connectivity characteristics in the Yangtze River Delta and its impact on high-quality urban development: A perspective on corporate headquarter-branch connections[J]. World Regional Studies, 2024, 33(3): 147-160.
李培庆, 赵新正, 姜永青, 郁星, 张得康. 长三角多尺度城市网络联系特征及其对城市高质量发展的影响[J]. 世界地理研究, 2024, 33(3): 147-160.
指标 | 一级指标 | 二级指标 |
---|---|---|
投入指标 | 劳动力投入 | 常住人口 |
资本投入 | 全社会固定资产投入 | |
能源投入 | 万吨标准煤 | |
产出指标 | 经济产出 | GDP |
创新产出 | 城市专利申请量 | |
社会产出 | 政府财政收入 | |
非期望产出 | 二氧化硫排放 | |
工业废水排放 | ||
烟粉尘排放 |
Tab.1 The high-quality urban development index system
指标 | 一级指标 | 二级指标 |
---|---|---|
投入指标 | 劳动力投入 | 常住人口 |
资本投入 | 全社会固定资产投入 | |
能源投入 | 万吨标准煤 | |
产出指标 | 经济产出 | GDP |
创新产出 | 城市专利申请量 | |
社会产出 | 政府财政收入 | |
非期望产出 | 二氧化硫排放 | |
工业废水排放 | ||
烟粉尘排放 |
变量 | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
DEGREE | 0.39**(4.57) | 0.42**(4.41) | 0.43***(4.74) | 0.43***(4.91) | 0.41***(4.46) | 0.42***(4.25) | 0.40***(4.00) |
POP | -0.30 (-1.57) | -0.73*** (-3.83) | -0.74*** (-3.99) | -0.84*** (-4.08) | -0.82*** (-3.60) | -1.37*** (-5.26) | |
TEC | 0.70***(3.20) | 0.71***(3.27) | 0.83***(3.94) | 0.83***(3.92) | 0.62*(1.94) | ||
FDI | 0.14***(4.44) | 0.13***(4.27) | 0.13***(4.34) | 0.16***(9.00) | |||
AGG | 0.23***(2.79) | 0.23***(2.71) | 0.17*(1.88) | ||||
HUM | -0.05(-0.52) | -0.31(-0.55) | |||||
CONS | -0.07(-0.37) | -0.09(-0.46) | 0.27(1.48) | 0.20(1.25) | 0.31*(1.90) | 0.31*(1.91) | 0.09(0.42) |
时间 | YES | YES | YES | YES | YES | YES | YES |
城市 | YES | YES | YES | YES | YES | YES | YES |
模型 | 随机效应 | 随机效应 | 随机效应 | 随机效应 | 随机效应 | 随机效应 | 固定效应 |
R2 | 0.32 | 0.34 | 0.38 | 0.42 | 0.43 | 0.43 | 0.44 |
Tab.2 The baseline model regression results
变量 | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
DEGREE | 0.39**(4.57) | 0.42**(4.41) | 0.43***(4.74) | 0.43***(4.91) | 0.41***(4.46) | 0.42***(4.25) | 0.40***(4.00) |
POP | -0.30 (-1.57) | -0.73*** (-3.83) | -0.74*** (-3.99) | -0.84*** (-4.08) | -0.82*** (-3.60) | -1.37*** (-5.26) | |
TEC | 0.70***(3.20) | 0.71***(3.27) | 0.83***(3.94) | 0.83***(3.92) | 0.62*(1.94) | ||
FDI | 0.14***(4.44) | 0.13***(4.27) | 0.13***(4.34) | 0.16***(9.00) | |||
AGG | 0.23***(2.79) | 0.23***(2.71) | 0.17*(1.88) | ||||
HUM | -0.05(-0.52) | -0.31(-0.55) | |||||
CONS | -0.07(-0.37) | -0.09(-0.46) | 0.27(1.48) | 0.20(1.25) | 0.31*(1.90) | 0.31*(1.91) | 0.09(0.42) |
时间 | YES | YES | YES | YES | YES | YES | YES |
城市 | YES | YES | YES | YES | YES | YES | YES |
模型 | 随机效应 | 随机效应 | 随机效应 | 随机效应 | 随机效应 | 随机效应 | 固定效应 |
R2 | 0.32 | 0.34 | 0.38 | 0.42 | 0.43 | 0.43 | 0.44 |
变量 | (8) | (9) | (10) | (11) |
---|---|---|---|---|
DEGREE | 0.28*** (4.97) | 0.29*** (4.19) | 0.42*** (5.48) | 0.20** (2.56) |
控制变量 | YES | YES | YES | YES |
时间 | YES | YES | YES | YES |
城市 | YES | YES | YES | YES |
模型 | 随机效应 | 固定效应 | 随机效应 | 固定效应 |
Tab.3 The robustness test
变量 | (8) | (9) | (10) | (11) |
---|---|---|---|---|
DEGREE | 0.28*** (4.97) | 0.29*** (4.19) | 0.42*** (5.48) | 0.20** (2.56) |
控制变量 | YES | YES | YES | YES |
时间 | YES | YES | YES | YES |
城市 | YES | YES | YES | YES |
模型 | 随机效应 | 固定效应 | 随机效应 | 固定效应 |
变量 | (12) | (13 | (14) | (15) |
---|---|---|---|---|
DEGREE1 | 0.47***(5.58) | 0.45***(4.88) | ||
DEGREE2 | 0.40***(4.04) | 0.38***(3.85) | ||
控制变量 | YES | YES | YES | YES |
时间 | YES | YES | YES | YES |
城市 | NO | NO | YES | YES |
模型 | 随机效应 | 随机效应 | 固定效应 | 固定效应 |
R2 | 0.412 | 0.425 | 0.472 | 0.487 |
Tab.4 Scale heterogeneity regression results
变量 | (12) | (13 | (14) | (15) |
---|---|---|---|---|
DEGREE1 | 0.47***(5.58) | 0.45***(4.88) | ||
DEGREE2 | 0.40***(4.04) | 0.38***(3.85) | ||
控制变量 | YES | YES | YES | YES |
时间 | YES | YES | YES | YES |
城市 | NO | NO | YES | YES |
模型 | 随机效应 | 随机效应 | 固定效应 | 固定效应 |
R2 | 0.412 | 0.425 | 0.472 | 0.487 |
变量 | (16) | (17) |
---|---|---|
DEGREE | 1.19*** (3.49) | 1.14*** (3.61) |
DEGREE *POP | -0.35** (-2.70) | -0.32*** (-2.64) |
POP | -1.50*** (-8.33) | -0.96*** (-4.45) |
控制变量 | YES | YES |
时间 | YES | YES |
城市 | NO | YES |
模型 | 随机效应 | 固定效应 |
R2 | 0.48 | 0.47 |
Tab.5 The size heterogeneity regression results
变量 | (16) | (17) |
---|---|---|
DEGREE | 1.19*** (3.49) | 1.14*** (3.61) |
DEGREE *POP | -0.35** (-2.70) | -0.32*** (-2.64) |
POP | -1.50*** (-8.33) | -0.96*** (-4.45) |
控制变量 | YES | YES |
时间 | YES | YES |
城市 | NO | YES |
模型 | 随机效应 | 固定效应 |
R2 | 0.48 | 0.47 |
相关系数 | 城市经济发展 | 城市社会发展 | 城市创新发展 | 城市绿色发展 |
---|---|---|---|---|
城市高质量发展 | 0.43*** | 0.32*** | 0.35*** | 0.25*** |
Tab.6 Correlation analysis
相关系数 | 城市经济发展 | 城市社会发展 | 城市创新发展 | 城市绿色发展 |
---|---|---|---|---|
城市高质量发展 | 0.43*** | 0.32*** | 0.35*** | 0.25*** |
变量 | (18) | (19) | (20) | (21) | (22) | (23) | (24) | (25) | (26) | (27) | (28) | (29) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
被解释变量 | ENC | ENC | ENC | SOC | SOC | SOC | INN | INN | INN | GEE | GEE | GEE |
DEGREE | 0.199* (3.53) | 0.333*** (6.37) | 0.057 (1.52) | 0.002 (0.04) | ||||||||
DEGREE1 | 0.222** (4.42) | 0.372*** (9.83) | 0.079* (1.76) | 0.002 (0.03) | ||||||||
DEGREE2 | 0.187*** (3.41) | 0.104* (1.76) | 0.051 (1.46) | -0.003 (-0.07) | ||||||||
控制变量 | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
时间 | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
城市 | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
模型 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
R2 | 0.744 | 0.753 | 0.741 | 0.457 | 0.675 | 0.746 | 0.779 | 0.805 | 0.431 | 0.156 | 0.151 | 0.154 |
Tab.7 The transmission mechanism regression results
变量 | (18) | (19) | (20) | (21) | (22) | (23) | (24) | (25) | (26) | (27) | (28) | (29) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
被解释变量 | ENC | ENC | ENC | SOC | SOC | SOC | INN | INN | INN | GEE | GEE | GEE |
DEGREE | 0.199* (3.53) | 0.333*** (6.37) | 0.057 (1.52) | 0.002 (0.04) | ||||||||
DEGREE1 | 0.222** (4.42) | 0.372*** (9.83) | 0.079* (1.76) | 0.002 (0.03) | ||||||||
DEGREE2 | 0.187*** (3.41) | 0.104* (1.76) | 0.051 (1.46) | -0.003 (-0.07) | ||||||||
控制变量 | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
时间 | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
城市 | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
模型 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 | 固定效应 |
R2 | 0.744 | 0.753 | 0.741 | 0.457 | 0.675 | 0.746 | 0.779 | 0.805 | 0.431 | 0.156 | 0.151 | 0.154 |
1 | CASTELLS M. The Rise of the Network Society. Oxford: Blackwell, 1996. |
2 | TAYLOR P. Hierarchical tendencies amongst world cities: A global research proposal. Cities, 1997, 14(6): 323-332. |
3 | 谭一洺, 杨永春, 冷炳荣, 等. 基于高级生产者服务业视角的成渝地区城市网络体系. 地理科学进展, 2011, 30(6): 724-732. |
TAN Y, YANG Y, LENG B, et al. Urban network system in Chengdu-Chongqing region in the perspective of advanced producer service. Progress in Geography, 2011, 30(6): 724-732. | |
4 | 赵新正, 李秋平, 芮旸, 等. 基于财富500 强中国企业网络的城市网络空间联系特征. 地理学报, 2019, 74(4): 694- 709. |
ZHAO X, LI Q, RUI Y, et al. The characteristics of urban network of China: A study based on the Chinese companies in the Fortune Global 500 list. Acta Geographica Sinica, 2019, 74(4): 694-709. | |
5 | 胡国建, 陆玉麒. 基于企业视角的城市网络研究进展、思考和展望. 地理科学进展, 2020, 39(9): 1587-1596. |
HU G, LU Y. Progress, thoughts, and prospect of urban network research based on enterprise perspective. Progress in Geography, 2020,39(9): 1587-1596. | |
6 | LUTHI S, THIERSTEIN A, GOEBEL V. Intra-firm and extra-firm linkages in the knowledge economy: The case of the emerging mega-city region of Munich. Global Networks, 2010, 10(1): 114-137. |
7 | PAN F, XIA Y. Location and agglomeration of headquarters of publicly listed firms within China's urban system. Urban Geography, 2014, 35(5): 757-779. |
8 | CAPELLO R.The city network paradigm: Measuring urban network externalities.Urban Studies,2000,37(11):1925-1945. |
9 | VAN M, NEAL Z, DERUDDER B. Disentangling agglomeration and network externalities: A conceptual typology. Papers in Regional Science, 95(1), 61-80. |
10 | MEIGERS E, BURGER M, HOOGERBRUGGE M. Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe. Papers in Regional Science, 2016, 95(1): 181-198. |
11 | ALONSO W. Urban zero population growth. Daedalus, 1973, 102(4): 191-206. |
12 | BURGER M, MERJERS E, VAN O. Regional spatial structure and retail amenities in the Netherlands. Regional Studies, 2014, 48(12): 1972-1992. |
13 | CAMAGNI R, CAPELL R, CARAGLIU A. Static vs. dynamic agglomeration economies: Spatial context and structural evolution behind urban growth. Papers in Regional Science, 2017, 95(1): 133-158. |
14 | MEIJERS E, BURGER M. Stretching the concept of "borrowed size". Urban Studies, 2016, 54(1): 269-291. |
15 | 叶珊珊, 曹明明, 胡胜. 关中平原城市群经济联系网络结构演变及对经济增长影响研究. 干旱区地理, 2022, 45(1): 277-286. |
YE S, CAO M, HU S. Study on the evolution of economic connection network structure of urban agglomeration in Guanzhong Plain and its impact on economic growth. Geography of Arid Areas, 2022, 45 (1): 277-286. | |
16 | 姚常成,吴康.集聚外部性、网络外部性与城市创新发展.地理研究,2022,41(9):2330-2349. |
YAO C, WU K. Cluster externality, network externality and urban innovative development. Geographical Research, 2022,41 (9): 2330-2349. | |
17 | 谭爽, 魏冶, 李晓玲, 等. 不同邻近性视角下城市网络外部性、集聚外部性对城市经济的影响——以辽宁省城市网络为例. 地理研究, 2022, 41(9): 2404-2417. |
TAN S, WEI Y, LI X, et al. The impact of urban network externalities and agglomeration externalities on urban economy through the lens of different proximity: A case of urban network in Liaoning Province. Geographical Research, 2022, 41(9): 2404-2417. | |
18 | 程玉鸿, 陈利静. 城市网络发育特征及其对城市竞争力的影响——基于珠三角主要金融行业148家企业选址数据. 产经评论, 2014, 5(4): 117-127. |
CHENG Y, CHEN L. Characteristics of urban network development and its impact on urban competitiveness-based on site selection data of 148 enterprises in major financial industries in the Pearl River Delta. Industrial and Economic Review, 2014, 5(4): 117-127. | |
19 | 盛科荣, 张杰, 张红霞. 上市公司500强企业网络嵌入对中国城市经济增长的影响. 地理学报, 2021, 76(4): 818-834. |
SHENG K, ZHANG J, ZHANG H. Network embedding and urban economic growth in China: A study based on the corporate networks of top 500 public companies. Acta Geographica Sinica, 2021, 76(4): 818-834. | |
20 | 罗能生, 田梦迪, 杨钧, 等. 高铁网络对城市生态效率的影响——基于中国277个地级市的空间计量研究. 中国人口·资源与环境, 2019, 29(11): 1-10. |
LUO N, TIAN M, YANG J, et al. The impact of high-speed rail network on urban ecological efficiency-a spatial econometric study based on 277 prefecture level cities in China. China's Population, Resources and Environment, 2019, 29 (11): 1-10. | |
21 | 周灿, 曾刚, 曹贤忠. 中国城市创新网络结构与创新能力研究. 地理研究, 2017, 36(7): 1297-1308. |
ZHOU C, ZENG G, CAO X. Research on the structure and innovation ability of China's urban innovation network. Geographical Research, 2017, 36(7): 1297-1308. | |
22 | 覃成林, 桑曼乘. 城市网络与城市经济增长. 学习与实践, 2015(4): 5-11. |
QIN C, SANG M. Urban network and urban economic growth. Study and Practice, 2015(4): 5-11. | |
23 | VOLGMANN K, RUSCHE K. The geography of borrowing size: Exploring spatial distributions for German urban regions. Tijdschrift voor Economische en Sociale Geografie, 2020, 111(1): 60-79. |
24 | 姚常成, 宋冬林. 借用规模、网络外部性与城市群集聚经济. 产业经济研究, 2019(2): 76-87. |
YAO C, SONG D. Borrowed-size, network externalities and agglomeration economies in the urban agglomerations. Industrial Economics Research, 2019(2): 76-87. | |
25 | 刘修岩, 陈子扬. 城市体系中的规模借用与功能借用——基于网络外部性视角的实证检验. 城市问题, 2017(12): 12-19. |
LIU X, CHEN Z. "Borrowed size" and "borrowed functions" in urban system: Empirical research on agglomeration economy from the view of externalities of networks. Urban Problems, 2017(12): 12-19. | |
26 | 刘乐, 盛科荣, 张杰, 等. 金融网络嵌入对中国城市创业活力的影响研究. 地理科学进展, 2022, 41(12): 2244-2257. |
LIU L, SHENG K, ZHANG J, et al. The impact of financial network embedding on entrepreneurial vitality of cities in China. Progress in Geography, 2022, 41(12): 2244-2257. | |
27 | OTSSUKA A. How do population agglomeration and interregional networks improve energy efficiency? Asia-Pacific Journal of Regional Science, 2019, 41(1): 43-52. |
28 | 刘传明, 马青山. 黄河流域高质量发展的空间关联网络及驱动因素. 经济地理, 2020, 40(10): 91-99. |
LIU C, MA Q. Spatial association network and driving factors of high quality development in the Yellow River Basin. Economic Geography, 2020, 40(10): 91-99. | |
29 | 李金昌, 史龙梅, 徐蔼婷. 高质量发展评价指标体系探讨. 统计研究, 2019, 36(1): 4-14. |
LI J, SHI L, XU A. Probe into the assessment indicator system on high quality development. Statistical Research, 2019, 36(1): 4-14. | |
30 | 聂长飞, 简新华. 中国高质量发展的测度及省际现状的分析比较. 数量经济技术经济研究, 2020, 27(2): 26-47. |
NIE C, JIAN X. Measurement of China's high- quality development and analysis of provincial status. The Journal of Quantitative & Technical Economics, 2020, 27(2): 26-47. | |
31 | MARSHALL A. Principles of Economics. London: Macmillan, 1966. |
32 | JACOBS J. The Economy of Cities. New York: Random House, 1969. |
33 | PORTER M, PORTER E.The competitiveness advantage of nations.Competitive Intelligence Review, 2010, 1(1): 14-14. |
34 | ARROW K J. The economic implications of learning by doing. The Review of Economic Studies, 1962, 29(3): 155-173. |
35 | ROMER P. Increasing returns and long-run growth. Journal of Political Economy, 1986, 94(5): 1002-1037. |
36 | HU C, XU Z, YASHIRO N. Agglomeration and productivity in China: Firm level evidence. China Economic Review, 2015(33): 50-66. |
37 | BATHELT H, MALMBERG A, MASKELL P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 2015, 8(1): 31-56. |
38 | MASKELL P, BATHELT H. MALMBERG A. Building global knowledge pipelines: The role of temporary clusters. European Planning Studies, 2016, 14(8): 997-1013. |
39 | BATHELT H. Buzz-and-pipeline dynamics: Towards a knowledge-based multiplier model of clusters. Geography Compass, 2017, 1(6): 1282-1298. |
40 | CAO K, DERUDDER B, DAI L, et al. 'Buzz-and-pipeline' dynamics in Chinese science: The impact of interurban collaboration linkages on cities' innovation capacity. Regional Studies, 2022, 56(2): 290-306. |
41 | 陈旭, 张亮, 张硕. 多中心空间发展模式与雾霾污染: 基于中国城市数据的经验研究. 重庆大学学报(社会科学版), 2021, 27(5): 30-44. |
CHEN X, ZHANG L, ZHANG S. Polycentric spatial structure and haze pollution: An empirical study based on Chinese urban data. Journal of Chongqing University (Social Science Edition), 2021, 27(5): 30- 44. | |
42 | 丁松, 李若瑾. 数字经济、资源配置效率与城市高质量发展. 浙江社会科学, 2022(8): 11-21. |
DING S, LI R. Digital economy, resource allocation efficiency and high-quality development in prefecture-level cities. Zheijiang Social Sciences, 2022(8): 11-21. | |
43 | TONE K. A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 2002(143): 32-41. |
44 | ALDERSON A, BECKFIELD J. Power and position in the world city system. American Journal of Sociology, 2004, 109(4): 811-851. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||