

World Regional Studies ›› 2025, Vol. 34 ›› Issue (9): 86-102.DOI: 10.3969/j.issn.1004-9479.2025.09.20240160
Previous Articles Next Articles
Received:2024-03-21
Revised:2024-06-22
Online:2025-09-15
Published:2025-09-30
Contact:
Jia WANG
通讯作者:
王佳
作者简介:周霞(1975—),女,教授,博士,研究方向为城市韧性,E-mail:zhouxia@bucea.edu.cn。
基金资助:Xia ZHOU, Jia WANG. The spatio-temporal evolution and influencing factors of economic resilience in the five major urban agglomerations of China[J]. World Regional Studies, 2025, 34(9): 86-102.
周霞, 王佳. 中国五大城市群经济韧性的时空特征及影响因素分析[J]. 世界地理研究, 2025, 34(9): 86-102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://sjdlyj.ecnu.edu.cn/EN/10.3969/j.issn.1004-9479.2025.09.20240160
| 指标类别 | 准则层 | 指标层 | 指标含义(方向) | 综合权重 |
|---|---|---|---|---|
| 开发驱动D | 城镇化水平 | 城镇化率 | 城镇集聚水平(+) | 0.060 3 |
| 人口总量 | 常住人口 | 劳动力资源丰富程度(+) | 0.079 5 | |
| 维持承压P | 财政风险 | 财政收支缺口率 | 政府债务风险(-) | 0.035 0 |
| 外贸依存度 | 金融机构贷存比 | 金融流动性风险(-) | 0.078 2 | |
| 金融风险 | 外贸依存度 | 城市贸易压力(-) | 0.045 3 | |
| 抵抗释放S | 经济规模 | 人均GDP* | 经济发展的稳定性(+) | 0.042 9 |
| 产业结构 | 产业结构升级 | 产业发展结构(+) | 0.047 7 | |
| 资产投资 | 固定资产投资* | 地区投资规模(+) | 0.082 5 | |
| 消费零售 | 社会消费品零售总额* | 地区市场规模(+) | 0.047 1 | |
| 创新重组R | 储备力量 | 每万人高等在校学生数 | 创新潜力(+) | 0.102 2 |
| 创新能力 | 创新指数 | 区域创新水平(+) | 0.185 9 | |
| 创新保护 | 知识保护水平 | 创新保护程度(+) | 0.193 4 |
Tab.1 Evaluation index system of economic resilience based on adaptive cycle theory and the DPSR model
| 指标类别 | 准则层 | 指标层 | 指标含义(方向) | 综合权重 |
|---|---|---|---|---|
| 开发驱动D | 城镇化水平 | 城镇化率 | 城镇集聚水平(+) | 0.060 3 |
| 人口总量 | 常住人口 | 劳动力资源丰富程度(+) | 0.079 5 | |
| 维持承压P | 财政风险 | 财政收支缺口率 | 政府债务风险(-) | 0.035 0 |
| 外贸依存度 | 金融机构贷存比 | 金融流动性风险(-) | 0.078 2 | |
| 金融风险 | 外贸依存度 | 城市贸易压力(-) | 0.045 3 | |
| 抵抗释放S | 经济规模 | 人均GDP* | 经济发展的稳定性(+) | 0.042 9 |
| 产业结构 | 产业结构升级 | 产业发展结构(+) | 0.047 7 | |
| 资产投资 | 固定资产投资* | 地区投资规模(+) | 0.082 5 | |
| 消费零售 | 社会消费品零售总额* | 地区市场规模(+) | 0.047 1 | |
| 创新重组R | 储备力量 | 每万人高等在校学生数 | 创新潜力(+) | 0.102 2 |
| 创新能力 | 创新指数 | 区域创新水平(+) | 0.185 9 | |
| 创新保护 | 知识保护水平 | 创新保护程度(+) | 0.193 4 |
| 名称 | 政策依据 | 城市名单 |
|---|---|---|
| 珠三角城市群(9) | 2019年国务院《粤港澳大湾区发展规划纲要》 | 广东(9):广州、深圳、珠海、佛山、江门、肇庆、惠州、东莞、中山 |
| 长三角城市群(27) | 2019年国务院《长江三角洲区域一体化发展规划纲要》 | 上海 江苏(9):南京、无锡、常州、苏州、南通、扬州、镇江、盐城、泰州 浙江(9):杭州、宁波、湖州、嘉兴、绍兴、金华、舟山、台州、温州 安徽(8):合肥、芜湖、马鞍山、铜陵、安庆、滁州、池州、宣城 |
| 京津冀城市群(13) | 2015年中央财经领导小组审议《京津冀协同发展规划纲要》 | 北京、天津 河北(11):石家庄、唐山、秦皇岛、邯郸、邢台、保定、张家口、承德、沧州、廊坊、衡水 |
| 长江中游城市群(28) | 2022年国家发展改革委《长江中游城市群发展十四五规划》 | 湖北(10):武汉、襄阳、宜昌、黄石、荆州、荆门、鄂州、孝感、黄冈、咸宁 湖南(8):长沙、株洲、湘潭、岳阳、益阳、常德、衡阳、娄底 江西(10):南昌、九江、景德镇、鹰潭、新余、宜春、萍乡、上饶、抚州、吉安 |
| 成渝城市群(16) | 2021年国务院《成渝地区双城经济圈建设规划纲要》 | 重庆 四川(15):成都、自贡、泸州、德阳、绵阳、遂宁、内江、乐山、南充、眉山、宜宾、广安、达州、雅安、资阳 |
Tab.2 Planning scope of the five major urban agglomerations
| 名称 | 政策依据 | 城市名单 |
|---|---|---|
| 珠三角城市群(9) | 2019年国务院《粤港澳大湾区发展规划纲要》 | 广东(9):广州、深圳、珠海、佛山、江门、肇庆、惠州、东莞、中山 |
| 长三角城市群(27) | 2019年国务院《长江三角洲区域一体化发展规划纲要》 | 上海 江苏(9):南京、无锡、常州、苏州、南通、扬州、镇江、盐城、泰州 浙江(9):杭州、宁波、湖州、嘉兴、绍兴、金华、舟山、台州、温州 安徽(8):合肥、芜湖、马鞍山、铜陵、安庆、滁州、池州、宣城 |
| 京津冀城市群(13) | 2015年中央财经领导小组审议《京津冀协同发展规划纲要》 | 北京、天津 河北(11):石家庄、唐山、秦皇岛、邯郸、邢台、保定、张家口、承德、沧州、廊坊、衡水 |
| 长江中游城市群(28) | 2022年国家发展改革委《长江中游城市群发展十四五规划》 | 湖北(10):武汉、襄阳、宜昌、黄石、荆州、荆门、鄂州、孝感、黄冈、咸宁 湖南(8):长沙、株洲、湘潭、岳阳、益阳、常德、衡阳、娄底 江西(10):南昌、九江、景德镇、鹰潭、新余、宜春、萍乡、上饶、抚州、吉安 |
| 成渝城市群(16) | 2021年国务院《成渝地区双城经济圈建设规划纲要》 | 重庆 四川(15):成都、自贡、泸州、德阳、绵阳、遂宁、内江、乐山、南充、眉山、宜宾、广安、达州、雅安、资阳 |
| 因素 | 总体 | 京津冀 | 长三角 | 珠三角 | 长江中游 | 成渝 |
|---|---|---|---|---|---|---|
双向固定 SDM | 双向固定 SAR | 双向固定 SDM | 双向固定 SAR | 双向固定 SEM | 双向固定 OLS | |
| 新型数字基础设施 | 0.010 2* (0.006 0) | 0.031 2* (0.016 7) | 0.000 2 (0.012 3) | 0.042 7* (0.025 1) | -0.005 0 (0.007 5) | 0.009 5 (0.009 3) |
| 传统基础设施 | -0.013 2* (0.007 3) | -0.017 2 (0.035 1) | 0.011 3 (0.014 8) | -0.029 6 (0.020 1) | -0.037 8*** (0.009 6) | 0.025 9** (0.011 1) |
| 财政支持 | -0.128 0*** (0.033 5) | -0.129 2 (0.094 3) | 0.216 7*** (0.054 5) | 0.087 1 (0.105 8) | 0.301 1** (0.153 3) | -0.200 8* (0.105 2) |
| 科技支出 | 0.165 2*** (0.017 7) | 0.368 3*** (0.084 3) | 0.066 9* (0.040 0) | -0.062 2 (0.047 8) | 0.049 0 (0.061 9) | 0.290 4*** (0.053 6) |
| 教育支出 | 0.384 3*** (0.031 2) | 0.261 2*** (0.098 8) | 0.043 6 (0.066 1) | 0.592 4*** (0.055 3) | 0.034 3 (0.125 9) | 0.323 8*** (0.100 7) |
| 环境规制 | -0.050 7*** (0.016 1) | -0.004 9 (0.029 1) | 0.034 2 (0.031 3) | 0.143 7* (0.085 6) | 0.091 4*** (0.021 1) | -0.033 7 (0.028 5) |
| 创业活跃度 | 0.044 9*** (0.012 2) | 0.187 9* (0.106 3) | 0.046 0** (0.020 9) | 0.117 6*** (0.030 9) | 0.037 7** (0.014 7) | 0.042 2 (0.047 9) |
| Spatial-rho/lambda | 0.149 3*** (0.038 5) | -0.210 5*** (0.074 5) | 0.106 9 (0.083 6) | -0.220 3** (0.105 2) | -0.270 3*** (0.080 2) | — |
| 稳健LM(SEM) | 125.237*** | 0.272 | 2.717* | 0.248 | 19.158*** | 0.737 |
| 稳健LM(SAR) | 5.126** | 3.508* | 11.557*** | 4.307** | 0.939 | 2.071 |
| Husaum检验 | 19.51* | -15.04 | 23.46** | -3.39 | -243.71 | 52.79*** |
| 控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
| 个体固定效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
| 时间固定效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
| R2(within) | 0.032 2 | 0.226 0 | 0.609 6 | 0.841 2 | 0.334 2 | 0.945 7 |
| Log-likelihood | 4 383.827 9 | 610.452 3 | 1 354.409 1 | 402.065 9 | 1527.322 6 | — |
Tab. 3 Baseline regression
| 因素 | 总体 | 京津冀 | 长三角 | 珠三角 | 长江中游 | 成渝 |
|---|---|---|---|---|---|---|
双向固定 SDM | 双向固定 SAR | 双向固定 SDM | 双向固定 SAR | 双向固定 SEM | 双向固定 OLS | |
| 新型数字基础设施 | 0.010 2* (0.006 0) | 0.031 2* (0.016 7) | 0.000 2 (0.012 3) | 0.042 7* (0.025 1) | -0.005 0 (0.007 5) | 0.009 5 (0.009 3) |
| 传统基础设施 | -0.013 2* (0.007 3) | -0.017 2 (0.035 1) | 0.011 3 (0.014 8) | -0.029 6 (0.020 1) | -0.037 8*** (0.009 6) | 0.025 9** (0.011 1) |
| 财政支持 | -0.128 0*** (0.033 5) | -0.129 2 (0.094 3) | 0.216 7*** (0.054 5) | 0.087 1 (0.105 8) | 0.301 1** (0.153 3) | -0.200 8* (0.105 2) |
| 科技支出 | 0.165 2*** (0.017 7) | 0.368 3*** (0.084 3) | 0.066 9* (0.040 0) | -0.062 2 (0.047 8) | 0.049 0 (0.061 9) | 0.290 4*** (0.053 6) |
| 教育支出 | 0.384 3*** (0.031 2) | 0.261 2*** (0.098 8) | 0.043 6 (0.066 1) | 0.592 4*** (0.055 3) | 0.034 3 (0.125 9) | 0.323 8*** (0.100 7) |
| 环境规制 | -0.050 7*** (0.016 1) | -0.004 9 (0.029 1) | 0.034 2 (0.031 3) | 0.143 7* (0.085 6) | 0.091 4*** (0.021 1) | -0.033 7 (0.028 5) |
| 创业活跃度 | 0.044 9*** (0.012 2) | 0.187 9* (0.106 3) | 0.046 0** (0.020 9) | 0.117 6*** (0.030 9) | 0.037 7** (0.014 7) | 0.042 2 (0.047 9) |
| Spatial-rho/lambda | 0.149 3*** (0.038 5) | -0.210 5*** (0.074 5) | 0.106 9 (0.083 6) | -0.220 3** (0.105 2) | -0.270 3*** (0.080 2) | — |
| 稳健LM(SEM) | 125.237*** | 0.272 | 2.717* | 0.248 | 19.158*** | 0.737 |
| 稳健LM(SAR) | 5.126** | 3.508* | 11.557*** | 4.307** | 0.939 | 2.071 |
| Husaum检验 | 19.51* | -15.04 | 23.46** | -3.39 | -243.71 | 52.79*** |
| 控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
| 个体固定效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
| 时间固定效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
| R2(within) | 0.032 2 | 0.226 0 | 0.609 6 | 0.841 2 | 0.334 2 | 0.945 7 |
| Log-likelihood | 4 383.827 9 | 610.452 3 | 1 354.409 1 | 402.065 9 | 1527.322 6 | — |
| 区域 | 新型数字基础设施 | 传统基础设施 | 财政支持 | 科技支出 | 教育支出 | 环境规制 | 创业活跃度 | |
|---|---|---|---|---|---|---|---|---|
| 总体 | 直接效应 | 0.009 6 (0.006 2) | -0.012 9* (0.007 1) | -0.125 5*** (0.032 1) | 0.167 2*** (0.016 6) | 0.376 5*** (0.030 5) | -0.048 4*** (0.015 6) | 0.045 7*** (0.012 6) |
| 间接效应 | -0.045 3*** (0.016 6) | 0.051 1*** (0.019 6) | -0.051 7 (0.0961 2) | 0.133 7** (0.053 0) | -0.263 2*** (0.092 9) | 0.090 3*** (0.028 2) | 0.035 1 (0.031 9) | |
| 总效应 | -0.035 7* (0.018 4) | 0.038 5* (0.022 1) | -0.177 2* (0.103 4) | 0.300 9*** (0.054 9) | 0.113 3 (0.100 6) | 0.041 9* (0.023 8) | 0.080 8** (0.032 2) | |
| BTH | 直接效应 | 0.032 1* (0.017 4) | -0.018 9 (0.034 3) | -0.120 2 (0.091 0) | 0.368 2*** (0.081 3) | 0.257 9*** (0.097 7) | -0.003 6 (0.029 1) | 0.189 3* (0.107 6) |
| 间接效应 | -0.005 8 (0.003 6) | 0.003 6 (0.006 8) | 0.021 1 (0.018 1) | 0.066 4*** (0.024 2) | -0.046 5** (0.023 2) | 0.000 9 (0.005 7) | -0.034 4 (0.022 9) | |
| 总效应 | 0.026 3* (0.014 5) | -0.015 3 (0.028 0) | -0.099 1 (0.075 8) | 0.301 9*** (0.071 8) | 0.211 6*** (0.082 7) | -0.002 7 (0.023 7) | 0.154 9* (0.089 1) | |
| YRD | 直接效应 | 0.001 5 (0.012 8) | 0.013 1 (0.014 8) | 0.218 7*** (0.052 4) | 0.077 9** (0.039 3) | 0.030 3 (0.066 0) | 0.035 5 (0.031 1) | 0.043 9** (0.022 1) |
| 间接效应 | 0.055 4 (0.039 1) | 0.172 2*** (0.058 9) | -0.310 9 (0.311 1) | 0.872 1*** (0.207 8) | -0.585 7* (0.354 3) | -0.050 9 (0.092 2) | -0.148 0** (0.068 6) | |
| 总效应 | 0.056 9 (0.043 0) | 0.185 4*** (0.065 8) | -0.092 1 (0.326 9) | 0.949 9*** (0.216 3) | -0.555 4 (0.368 2) | -0.015 5 (0.093 4) | -0.104 1 (0.070 3) | |
| PRD | 直接效应 | 0.044 2* (0.026 1) | -0.030 9 (0.019 8) | 0.100 0 (0.102 7) | -0.067 4 (0.045 0) | 0.597 9*** (0.052 9) | 0.150 8* (0.085 5) | 0.118 9*** (0.032 6) |
| 间接效应 | -0.008 3 (0.006 3) | 0.005 9 (0.004 9) | -0.019 1 (0.022 7) | 0.012 8 (0.010 9) | -0.110 3** (0.047 2) | -0.027 5 (0.020 1) | -0.022 1* (0.011 5) | |
| 总效应 | 0.036 0* (0.021 6) | -0.025 0 (0.016 1) | 0.081 0 (0.083 5) | -0.054 6 (0.036 6) | 0.487 6*** (0.066 6) | 0.123 3* (0.071 3) | 0.096 8*** (0.027 7) | |
Tab.4 Spatial effects decomposition
| 区域 | 新型数字基础设施 | 传统基础设施 | 财政支持 | 科技支出 | 教育支出 | 环境规制 | 创业活跃度 | |
|---|---|---|---|---|---|---|---|---|
| 总体 | 直接效应 | 0.009 6 (0.006 2) | -0.012 9* (0.007 1) | -0.125 5*** (0.032 1) | 0.167 2*** (0.016 6) | 0.376 5*** (0.030 5) | -0.048 4*** (0.015 6) | 0.045 7*** (0.012 6) |
| 间接效应 | -0.045 3*** (0.016 6) | 0.051 1*** (0.019 6) | -0.051 7 (0.0961 2) | 0.133 7** (0.053 0) | -0.263 2*** (0.092 9) | 0.090 3*** (0.028 2) | 0.035 1 (0.031 9) | |
| 总效应 | -0.035 7* (0.018 4) | 0.038 5* (0.022 1) | -0.177 2* (0.103 4) | 0.300 9*** (0.054 9) | 0.113 3 (0.100 6) | 0.041 9* (0.023 8) | 0.080 8** (0.032 2) | |
| BTH | 直接效应 | 0.032 1* (0.017 4) | -0.018 9 (0.034 3) | -0.120 2 (0.091 0) | 0.368 2*** (0.081 3) | 0.257 9*** (0.097 7) | -0.003 6 (0.029 1) | 0.189 3* (0.107 6) |
| 间接效应 | -0.005 8 (0.003 6) | 0.003 6 (0.006 8) | 0.021 1 (0.018 1) | 0.066 4*** (0.024 2) | -0.046 5** (0.023 2) | 0.000 9 (0.005 7) | -0.034 4 (0.022 9) | |
| 总效应 | 0.026 3* (0.014 5) | -0.015 3 (0.028 0) | -0.099 1 (0.075 8) | 0.301 9*** (0.071 8) | 0.211 6*** (0.082 7) | -0.002 7 (0.023 7) | 0.154 9* (0.089 1) | |
| YRD | 直接效应 | 0.001 5 (0.012 8) | 0.013 1 (0.014 8) | 0.218 7*** (0.052 4) | 0.077 9** (0.039 3) | 0.030 3 (0.066 0) | 0.035 5 (0.031 1) | 0.043 9** (0.022 1) |
| 间接效应 | 0.055 4 (0.039 1) | 0.172 2*** (0.058 9) | -0.310 9 (0.311 1) | 0.872 1*** (0.207 8) | -0.585 7* (0.354 3) | -0.050 9 (0.092 2) | -0.148 0** (0.068 6) | |
| 总效应 | 0.056 9 (0.043 0) | 0.185 4*** (0.065 8) | -0.092 1 (0.326 9) | 0.949 9*** (0.216 3) | -0.555 4 (0.368 2) | -0.015 5 (0.093 4) | -0.104 1 (0.070 3) | |
| PRD | 直接效应 | 0.044 2* (0.026 1) | -0.030 9 (0.019 8) | 0.100 0 (0.102 7) | -0.067 4 (0.045 0) | 0.597 9*** (0.052 9) | 0.150 8* (0.085 5) | 0.118 9*** (0.032 6) |
| 间接效应 | -0.008 3 (0.006 3) | 0.005 9 (0.004 9) | -0.019 1 (0.022 7) | 0.012 8 (0.010 9) | -0.110 3** (0.047 2) | -0.027 5 (0.020 1) | -0.022 1* (0.011 5) | |
| 总效应 | 0.036 0* (0.021 6) | -0.025 0 (0.016 1) | 0.081 0 (0.083 5) | -0.054 6 (0.036 6) | 0.487 6*** (0.066 6) | 0.123 3* (0.071 3) | 0.096 8*** (0.027 7) | |
| [1] | WU J, LI B. Spatio-temporal evolutionary characteristics and type classification of marine economy resilience in China. Ocean & Coastal Management, 2022(217): 106016. |
| [2] | MARTIN R. Regional economic resilience, hysteresis and recessionary shocks. Journal of Economic Geography, 2012, 12(1): 1-32. |
| [3] | BRIGUGLIO L, CORDINA G, BUGEJA S, et al. Conceptualizing and measuring economic resilience. Building the Economic Resilience of Small States, 2006: 265-288. |
| [4] | COX E, BROADBRIDGE A, RAIKES L. Building Economic Resilience? An Analysis of Local Enterprise Partnerships' Plans. Newcastle: Institute for Public Policy Research, 2014:1-26. |
| [5] | 段进军, 玄泽源. 长三角一体化背景下江苏省县域经济韧性与乡村振兴耦合关系分析. 苏州大学学报(哲学社会科学版), 2021, 42(3): 32-43. |
| DUAN J, XUAN Z. Coupling research: County economic resilience and rural revitalization in Jiangsu Province under the background of the integration of the Yangtze River Delta. Journal of Soochow University (Philosophy & Social Science Edition), 2021, 42(3): 32-43. | |
| [6] | 李玉恒, 黄惠倩, 王晟业. 基于乡村经济韧性的传统农区城乡融合发展路径研究——以河北省典型县域为例. 经济地理, 2021, 41(8): 28-33. |
| LI Y, HUANG H, WANG S. Path of urban-rural integrated development in traditional agricultural zones based on rural economic resilience: The study of typical counties of Hebei Province. Economic Geography, 2021, 41(8): 28-33. | |
| [7] | 张秀艳, 白雯, 郑雪. 我国区域经济韧性的关联识别与演化特征分析. 吉林大学社会科学学报, 2021, 61(1): 90-101. |
| ZHANG X, BAI W, ZHENG X. Resilience identification and evolution characteristics of regional economy in China. Jilin University Journal Social Sciences Edition, 2021, 61(1): 90-101. | |
| [8] | DORAN J, FINGLETON B. US metropolitan area resilience: Insights from dynamic spatial panel estimation. Environment and Planning A: Economy and Space, 2018, 50(1): 111-132. |
| [9] | BRAKMAN S, GARRETSEN H, VAN M C. Regional resilience across europe: On urbanisation and the initial impact of the great recession. Cambridge Journal of Regions, Economy and Society, 2015, 8(2): 225-240. |
| [10] | DAVIES S. Regional resilience in the 2008-2010 downturn: Comparative evidence from European Countries. Cambridge Journal of Regions Economy and Society, 2011, 4(3): 369-382. |
| [11] | 赵春燕, 王世平. 经济集聚对城市经济韧性的影响. 中南财经政法大学学报, 2021(1): 102-114. |
| ZHAO C, WANG S.The influence of economic agglomeration on city economic resilience. Journal of Zhongnan University of Economics and Law. 2021(1): 102-114. | |
| [12] | 孙久文, 孙翔宇. 区域经济韧性研究进展和在中国应用的探索. 经济地理, 2017, 37(10): 1-9. |
| SUN J, SUN X. Research progress of regional economic resilience and exploration of its application in China. Economic Geography, 2017, 37(10): 1-9. | |
| [13] | 刘晓星, 张旭, 李守伟. 中国宏观经济韧性测度——基于系统性风险的视角. 中国社会科学, 2021(1): 12-32. |
| LIU X, ZHANG X, LI S. Measurement of China's macroeconomic resilience: A systemic risk perspective. Social Sciences in China, 2021(1): 12-32. | |
| [14] | ROSE A, LIAO S Y. Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions. Journal of Regional Science, 2005, 45(1): 75-112. |
| [15] | ZHANG Q, HUANG T, XU S. Assessment of urban ecological resilience based on PSR framework in the Pearl River Delta urban agglomeration, China. Land, 2023, 12(5): 1089. |
| [16] | JIAO L, WANG L, LU H, et al. An assessment model for urban resilience based on the Pressure-State-Response framework and BP-GA neural network. Urban Climate, 2023(49): 101543. |
| [17] | JI J, CHEN J. Urban flood resilience assessment using RAGA-PP and KL-TOPSIS model based on PSR framework: A case study of Jiangsu province, China. Water Science and Technology, 2022, 86(12): 3264-3280. |
| [18] | 赵建吉, 张馨歆, 王艳华, 等. 中国区域经济韧性的时空格局特征与影响因素. 经济地理, 2023, 43(8): 1-11. |
| ZHAO J, ZHANG X, WANG Y, et al. Spatiotemporal characteristics and influencing factors of regional economic resilience in China, Economic Geography, 2023, 43(8): 1-11. | |
| [19] | 赵远飞, 关皓明, 王士君, 等. "中心—外围"视角下东北地区市域经济韧性及影响因素分析. 资源开发与市场, 2023, 39(7): 835-843. |
| ZHAO Y, GUAN H, WANG S, et al. Characteristics and influencing factors of economic resilience in northeast China from the perspective of "central-cities and outer-suburbs". Resource Development & Market, 2023, 39(7): 835-843. | |
| [20] | 石磊, 张天柱. 贵阳市循环经济发展度量的研究. 中国人口·资源与环境, 2005(5): 67-70. |
| SHI L, ZHANG T. Circular economy indicators to evaluate regional development. China Population Resources and Environment, 2005(5): 67-70. | |
| [21] | 肖翠仙. 中国城市韧性综合评价研究. 南昌: 江西财经大学, 2021. |
| XIAO C. Research on comprehensive evaluation of urban resilience of china. Nanchang: Jiangxi University of Finance and Economics, 2021. | |
| [22] | GOMES R P J, PENA J G L A. Urban resilience: A conceptual framework. Sustainable Cities and Society, 2019(50): 101625. |
| [23] | MARTIN R. Regional economic resilience, hysteresis and recessionary shocks. Journal of Economic Geography, 2012, 12(1): 1-32. |
| [24] | PUGA D. The magnitude and causes of agglomeration economies. Journal of Regional Science, 2010, 50(1): 203-219. |
| [25] | ADAM C S, BEVAN D L. Fiscal deficits and growth in developing countries. Journal of Public Economics, 2005, 89(4): 571-597. |
| [26] | WEI L. Towards economic decoupling? Mapping Chinese discourse on the China-US trade war. The Chinese Journal of International Politics, 2019, 12(4): 519-556. |
| [27] | BROWNLEES C, ENGLE R F. Srisk: A conditional capital shortfall measure of systemic risk. The Review of Financial Studies, 2017, 30(1): 48-79. |
| [28] | MARTIN R, SUNLEY P, GARDINER B, et al. How regions react to recessions: Resilience and the role of economic structure. Regional Studies, 2016, 50(4): 561-585. |
| [29] | LI R, XU M, ZHOU H. Impact of high-speed rail operation on urban economic resilience: Evidence from local and spillover perspectives in China. Cities, 2023, 141: 104498. |
| [30] | 周霞, 王佳. 中国省域经济韧性与生态效率测度及其协同演化分析. 干旱区地理, 2024, 47(2): 319-331. |
| ZHOU X, WANG J. Measurement and synergistic evolution analysis of the economic resilience and eco-efficiency of provincial regions in China. Arid Land Geography, 2024, 47(2): 319-331. | |
| [31] | MOGLIA M, CORK S J, BOSCHETTI F, et al. Urban transformation stories for the 21st century: Insights from strategic conversations. Global Environmental Change-Human and Policy Dimensions, 2018(50): 222-237. |
| [32] | ELMQVIST T. Sustainability and resilience differ. Nature, 2017, 546(7658): 352-352. |
| [33] | MURRAY F, STERN S. Do formal intellectual property rights hinder the free flow of scientific knowledge? An empirical test of the anti-commons hypothesis. Journal of Economic Behavior & Organization, 2007, 63(4): 648-687. |
| [34] | SAMPAT B, WILLIAM H L. How do patents affect follow-on innovation? Evidence from the human genome. American Economic Review, 2019, 109(1): 203-236. |
| [35] | KONG D, ZHANG B, ZHANG J. Higher education and corporate innovation. Journal of Corporate Finance, 2022(72): 102165. |
| [36] | 林瑒焱, 徐昔保, 王维. 长江经济带绿色发展水平时空分异特征与影响因素. 长江流域资源与环境, 2023, 32(9): 1822-1833. |
| LIN Y, XU X, WANG W. Spatial⁃temporal characteristics and influencing factors of green development level in Yangtze River Economic Belt. Resources and Environment in the Yangtze Basin, 2023, 32(9): 1822-1833. | |
| [37] | 周霞, 王佳. 京津冀城市群城市韧性时空演变特征及空间差异研究:基于改进的PSR框架. 资源开发与市场, 2024, 40(2): 231-239. |
| ZHOU X, WANG J. Study on the spatio-temporal evolution characteristics and spatial differences of urban resilience in Beijing-Tianjin-Hebei urban agglomeration. Resource Development & Market, 2024, 40(2): 231-239. | |
| [38] | TORNATZKY L G, FLEISCHER M. Processes of Technological Innovation. Lexington: Lexington Books, 1990. |
| [39] | 唐欣, 谢诗蕾. 乡村经济韧性的时空分布及组态影响因素. 深圳大学学报(人文社会科学版), 2023, 40(5): 78-87. |
| TANG X, XIE S. Spatio-temporal distribution and configuration influencing factors of rural economic resilience. Journal of Shenzhen University (Humanities & Social Sciences), 2023, 40(5): 78-87. | |
| [40] | 孙秀梅, 闫肃. TOE框架下资源型城市低碳转型驱动路径——基于我国108个资源型城市的fsQCA研究. 科技进步与对策, 2023, 40(23): 72-81. |
| SUN X, YAN S. The driving path for low-carbon transformation of resource-dependent cities under the TOE framework: An fsQCA research based on 108 resource-dependent cities in China. Science & Technology Progress and Policy, 2023, 40(23): 72-81. | |
| [41] | 张振, 赵儒煜. 区域经济韧性的理论探讨. 经济体制改革, 2021(3): 47-52. |
| ZHANG Z, ZHAO R. Theoretical discussion on regional economic resilience. Reform of Economic System, 2021(3): 47-52. | |
| [42] | 钞小静, 薛志欣. 新型信息基础设施对中国经济韧性的影响——来自中国城市的经验证据. 经济学动态, 2023(8): 44-62. |
| CHAO X, XUE Z. The lmpact of new information infrastructure on China's economic resilience empirical evidence from Chinese cities. Economic Perspectives, 2023(8): 44-62. | |
| [43] | CHACON D, KUMAR I, GKRITZA K, et al. The role of transportation accessibility in regional economic resilience. Journal of Transport Geography, 2020(84): 102695. |
| [44] | 徐圆, 陈爱华. 高铁网络、区位优势与城市经济韧性. 财经科学, 2023(6): 71-87. |
| XU Y, CHEN A. High speed rail network, regional advantages and urban economic resilience. Finance & Economics, 2023(6): 71-87. | |
| [45] | 景宏军, 吴婧源. 财政韧性:财政应急治理现代化的一种思路. 财政科学, 2021(8): 34-47. |
| JING H, WU J. Fiscal resilience: An idea for the modernization of fiscal emergency management. Finance & Economics, 2021(8): 34-47. | |
| [46] | 惠献波.国家创新型城市建设、创新能力培育与经济韧性.现代管理科学,2024(2):3-12. |
| HUI X.National innovative city building,innovation capacity development and economic resilience.Modern Management Science,2024(2):3-12. | |
| [47] | 匡敏, 范逢春. 技术进步偏向、创新要素配置与经济韧性. 科技进步与对策, 2022, 39(23): 22-32. |
| KUANG M, FAN F. Technological progress bias, innovation factor allocation and economic resilience. Science & Technology Progress and Policy, 2022, 39(23): 22-32. | |
| [48] | PRADHAN R P, ARVIN M B, NAIR M, et al. The dynamics among entrepreneurship, innovation, and economic growth in the eurozone countries. Journal of Policy Modeling, 2020, 42(5): 1106-1122. |
| [49] | 张跃胜, 张寅雪, 邓帅艳. 异质性环境规制与城市经济韧性——基于全国278个地级市的实证检验. 贵州社会科学, 2022(11): 135-143. |
| ZHANG Y, ZHANG Y, DENG S. Heterogeneous environmental regulation and urban economic resilience: Based on 278 prefectural-level cities across China. Guizhou Social Sciences, 2022(11): 135-143. | |
| [50] | 徐圆, 张林玲. 中国城市的经济韧性及由来:产业结构多样化视角. 财贸经济, 2019, 40(7): 110-126. |
| XU Y, ZHAN L. The economic resilience of Chinese cities and its origin: From the perspective of diversification of industrial structure. Finance & Trade Economics, 2019, 40(7): 110-126. | |
| [51] | 何志浩, 张学波, 卢冰坤, 等. 中国城市群经济韧性时空演变及障碍因子分析. 地理与地理信息科学, 2023, 39(6): 125-133. |
| HE Z, ZHANG X, LU B, et al. Spatio-temporal evolution and obstacle factor analysis of economic resilience of urban agglomerations in China. Geography and Geo Information Science, 2023, 39(6): 125-133. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
